[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Carleson Measure Spaces with Variable Exponents and Their Applications

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we introduce the Carleson measure spaces with variable exponents \(CMO^{p(\cdot )}\). By using discrete Littlewood–Paley–Stein analysis as well as Frazier and Jawerth’s \(\varphi -\)transform in the variable exponent settings, we show that the dual spaces of the variable Hardy spaces \(H^{p(\cdot )}\) are \(CMO^{p(\cdot )}\). As applications, we obtain that Carleson measure spaces with variable exponents \(CMO^{p(\cdot )}\), Campanato space with variable exponent \({\mathfrak {L}}_{q,p(\cdot ),d}\) and Hölder–Zygmund spaces with variable exponents \(\mathcal {\dot{H}}_d^{p(\cdot )}\) coincide as sets and the corresponding norms are equivalent. Via using an argument of weak density property, we also prove that Calderón–Zygmund singular integral operators are bounded on \(CMO^{p(\cdot )}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coifman, R.: A real variable characterization of \(H^p\). Studia Math. 51, 269–274 (1974)

    Article  MathSciNet  Google Scholar 

  2. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  3. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  4. Cruz-Uribe, D., Wang, L.: Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Deng, D., Han, Y.-S.: Theory of \(H^p\) Spaces. Peking University Press, Beijing (1992)

    Google Scholar 

  7. Deng, D., Han, Y.-S.: Harmonic Analysis on Spaces of Homogeneous Type. Lecture Notes in Mathematics, vol. 1966. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Diening, L., Harjulehto, P., Hästö, P., R\(\mathring{u}\)z̆ic̆ka, M.: Lebesgue and Sobolev spaces with variable exponents. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18363-8

    Book  Google Scholar 

  9. Diening, L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(8), 657–700 (2005)

    Article  MathSciNet  Google Scholar 

  10. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  11. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  12. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  13. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

    Google Scholar 

  14. Han, Y.-C., Han, Y.-S.: Boundedness of composition operators associated with mixed homogeneities on Lipschitz spaces. Math. Res. Lett. 23(5), 1387–1403 (2016)

    Article  MathSciNet  Google Scholar 

  15. Han, Y.-S., Li, J., Lu, G.: Duality of multiparameter Hardy spaces \(H^p\) on spaces of homogeneous type. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(4), 645–685 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 199–213 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991)

    MATH  Google Scholar 

  18. Lee, M.-Y., Lin, C.-C.: Carleson measure spaces associated to para-accretive functions. Commun. Contemp. Math 14(1), 1250002 (2012). 19 pp

    Article  MathSciNet  Google Scholar 

  19. Lee, M.-Y., Lin, C.-C., Lin, Y.-C.: A wavelet characterization for the dual of weighted Hardy spaces. Proc. Am. Math. Soc. 137, 4219–4225 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, J., Ward, L.: Singular integrals on Carleson measure spaces \(CMO^p\) on product spaces of homogeneous type. Proc. Am. Math. Soc. 141(8), 2767–2782 (2013)

    Article  Google Scholar 

  21. Lin, C.-C., Wang, K.: Generalized Carleson measure spaces and their applications. Abstr. Appl. Anal. Article ID 879073, pp. 26 (2012)

  22. Lin, C.-C.: Boundedness of Monge–Ampére singular integral operators acting on Hardy spaces and their duals. Trans. Am. Math. Soc. 368(5), 3075–3104 (2016)

    Article  Google Scholar 

  23. Lin, C.-C., Wang, K.: Calderón–Zygmund operators acting on generalized Carleson measure spaces. Studia Math. 211(3), 231–240 (2012)

    Article  MathSciNet  Google Scholar 

  24. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tan, J.: Discrete para-product operators on variable Hardy spaces. Can. Math. Bull. https://doi.org/10.4153/S0008439519000298. arXiv:1903.10094, (2019)

  26. Tan, J.: Atomic decomposition of variable Hardy spaces via Littlewood–Paley–Stein theory. Ann. Funct. Anal. 9(1), 87–100 (2018)

    Article  MathSciNet  Google Scholar 

  27. Tan, J.: Atomic decompositions of localized Hardy spaces with variable exponents and applications. J. Geom. Anal. 29(1), 799–827 (2019)

    Article  MathSciNet  Google Scholar 

  28. Tan, J., Han, Y.-C.: Inhomogeneous multi-parameter Lipschitz spaces associated with different homogeneities and their applications. Filomat 32(9), 3397–3408 (2018)

    Article  MathSciNet  Google Scholar 

  29. Tan, J., Zhao, J.: Inhomogeneous Lipschitz spaces of variable order and their applications. Ann. Funct. Anal. 9(1), 72–86 (2018)

    Article  MathSciNet  Google Scholar 

  30. Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11(3), 715–734 (2017)

    Article  MathSciNet  Google Scholar 

  31. Yang, D., Zhuo, C., Yuan, W.: Triebel–Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9(4), 146–202 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yang, D., Zhuo, C., Liang, Y.: Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39(4), 1541–1577 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Project is sponsored by Natural Science Foundation of Jiangsu Province of China (Grant No. BK20180734), Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 18KJB110022) and Nanjing University of Posts and Telecommunications Science Foundation (Grant No. NY219114). The author wishes to express his heartfelt thanks to the referee for careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J. Carleson Measure Spaces with Variable Exponents and Their Applications. Integr. Equ. Oper. Theory 91, 38 (2019). https://doi.org/10.1007/s00020-019-2536-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-019-2536-0

Keywords

Mathematics Subject Classification

Navigation