[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On algebras of binary relations with conjunctive operations

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

In this paper, we find axiom systems and bases of identities for classes of algebras of binary relations with operations defined by logical formulas containing only conjunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréka, H.: Representation of distributive lattice-ordered semigroups with binary relations. Algebra Universalis 28, 12–25 (1991)

    Article  MathSciNet  Google Scholar 

  2. Andréka, H., Bredikhin, D.A.: The equational theory of union-free algebras of relations. Algebra Universalis 33, 516–532 (1995)

    Article  MathSciNet  Google Scholar 

  3. Andréka, H., Mikulás, Sz.: Axiomatizability of positive algebras of binary relations. Algebra Universalis 66, 7–34 (2011)

  4. Andréka, H., Neméti, I., Sain, I.: Algebraic Logic. In: Handbook of Philosophical Logic, vol. 2, 2nd ed., pp. 133–247. Kluwer Academic Publishers (2001)

  5. Böner, P., Pöschel, F.R.: Clones of operations on binary relations. Contrib. Gen. Algebra 7, 50–70 (1991)

    Google Scholar 

  6. Bredikhin, D.A.: On relation algebras with general superpositions. In: Andréka, H., Monk, J., Németi, I. (eds.) Algebraic Logic, vol. 54, pp. 111–124. North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Bredikhin, D.A.: Varieties of groupoids associated with involuted restrictive bisemigroups of binary relations. Semigroup Forum 44, 87–192 (1992)

    Article  MathSciNet  Google Scholar 

  8. Bredikhin, D.A.: On algebras of relations. Banach Center Publ. 28, 191–199 (1993)

    Article  Google Scholar 

  9. Bredikhin, D.A.: The equational theory of algebras of relations with positive operations. Izv. Vyssh. Uchebn. Zaved. Mat. 3, 23–30 (1993). Russian

  10. Bredikhin, D.A.: How representation theories of inverse semigroups and lattices can be united. Semigroup Forum 53, 184–193 (1996)

    Article  MathSciNet  Google Scholar 

  11. Bredikhin, D.A.: On quasi-identities of algebras of relations with Diophantine operations. Sib. Math. J. 38, 23–33 (1997)

    Article  MathSciNet  Google Scholar 

  12. Bredikhin, D.A.: Reducts of Tarski relation algebras. Algebra Logic 37, 1–8 (1998)

    Article  MathSciNet  Google Scholar 

  13. Bredikhin, D.A.: On algebras of relations with Diophantine operations. Dokl. Math. 57, 435–436 (1998)

    Google Scholar 

  14. Bredikhin, D.A.: On classes of \(\Omega \)-semigroups. In: Semigroups with Applications. Including Semigroup Rings, pp. 59–62. St. Petersburg State University of Technology, St Petersburg (1999)

  15. Bredikhin, D.A.: On the variety generated by ordered involuted semigroups of binary relations. Contrib. Gen. Algebra 13, 37–40 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Bredikhin, D.A.: On varieties of semigroups of relations with operations of cylindrofication. Contrib. Gen. Algebra 16, 1–6 (2005)

    MATH  Google Scholar 

  17. Bredikhin, D.A.: On varieties of groupoids of relations with operation of binary cylindrification. Algebra Universalis 73, 43–52 (2015)

    Article  MathSciNet  Google Scholar 

  18. Bredikhin, D.A.: On indentities of relation algebras with domino operations. Russ. Math. (Iz VUZ) 59, 62–66 (2015)

    Article  Google Scholar 

  19. Bredikhin, D.A.: On partially ordered semigroups of relations with domino operations. Semigroup Forum 92, 198–213 (2016)

    Article  MathSciNet  Google Scholar 

  20. Bredikhin, D.A.: On generalized subreducts of Tarski’s algebras of relations with the operation of bi-directional intersection. Algebra Universalis 79, 77–92 (2018)

    Article  MathSciNet  Google Scholar 

  21. Bredikhin, D.A.: Identities of groupoids of relations with operation of cylindered intersection. Russ. Math. (Iz VUZ) 62, 9–16 (2018)

    Article  Google Scholar 

  22. Bredikhin, D.A.: On classes of generalized subreducts of Tarski’s relation algebras with one diophantine binary operation. Math. Notes 106, 872–884 (2019)

    Article  MathSciNet  Google Scholar 

  23. Bredikhin, D.A.: On semigroups of relations with primitive-positive operations of rank two. Math. Mech. 21, 10–11 (2019)

    Google Scholar 

  24. Bredikhin, D.A.: On Algebras of Relations with Operations of Left and Right Reflexive Product. Lobachevskii J. Math. 41, 160–167 (2020)

    Article  MathSciNet  Google Scholar 

  25. Bredikhin, D., Schein, B.: Representation of ordered semigroups and lattices by binary relations. Colloq. Math. 39, 1–12 (1978)

    Article  MathSciNet  Google Scholar 

  26. Bredikhin, D.A., Popovich, A.V.: Identities of semigroups of relations with an operator of reflexive double cylindrification. Russ. Math. (Iz VUZ) 58, 90–95 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Haiman, M.: Arguesian lattices which are not type 1. Algebra Universalis 28, 128–137 (1991)

    Article  MathSciNet  Google Scholar 

  28. Hirsch, R., Mikulás, S.: Axiomatizability of representable domain algebras. J. Log. Algebr. Methods Program. 80, 75–91 (2011)

    Article  MathSciNet  Google Scholar 

  29. Hirsch, R., Mikulás, S.: Ordered domain algebras. J. Appl. Logics 11, 266–271 (2013)

    Article  MathSciNet  Google Scholar 

  30. Hodkinson, I., Mikulás, S.: Axiomatizability of reducts of algebras of relations. Algebra Universalis 43, 127–156 (2000)

    Article  MathSciNet  Google Scholar 

  31. Hirsch, R., Mikulás, S.: Representable semilattice-ordered monoids. Algebra Universalis 57, 333–370 (2007)

    Article  MathSciNet  Google Scholar 

  32. Jónsson, B.: Representation of modular lattices and of relation algebras. Trans. Am. Math. Soc. 92, 449–464 (1959)

    Article  MathSciNet  Google Scholar 

  33. Jónsson, B.: The theory of binary relations. In: Andréka, H., Monk, J., Németi, I. (eds.) Algebraic Logic, vol. 54, pp. 245–292. North-Holland, Amsterdam (1991)

    Google Scholar 

  34. Lyndon, R.C.: The representation of relation algebras. II. Ann. Math. 63, 294–307 (1956)

    Article  MathSciNet  Google Scholar 

  35. Markov, V.T., Mikhalev, A.V., Nechaev, A.A.: Nonassociative algebraic structures in cryptography and coding. Fundamentalnaya i prikladnaya matematika 21(4), 99–123 (2016)

    MATH  Google Scholar 

  36. Monk, J.D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)

    Article  MathSciNet  Google Scholar 

  37. Phillips, J.D.: Short equational bases for two varieties of groupoids associated with involuted restrictive bisemigroups of binary relations. Semigroup Forum 73, 308–312 (2006)

    Article  MathSciNet  Google Scholar 

  38. Schein, B.M.: Relation algebras and function semigroups. Semigroup Forum 1, 1–62 (1970)

    Article  MathSciNet  Google Scholar 

  39. Schein, B.M.: Representation of subreducts of Tarski relation algebras. In: Andréka, H., Monk, J., Németi, I. (eds.) Algebraic Logic, vol. 54, pp. 621–635. North-Holland, Amsterdam (1991)

  40. Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73–89 (1941)

    Article  MathSciNet  Google Scholar 

  41. Tarski, A.: Contributions to the theory of models. III. Proc. Konikl. Nederl. Akad. Wet. 58, 56–64 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Bredikhin.

Additional information

Presented by T. Stokes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredikhin, D.A. On algebras of binary relations with conjunctive operations. Algebra Univers. 82, 39 (2021). https://doi.org/10.1007/s00012-021-00730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-021-00730-9

Mathematics Subject Classification

Keywords

Navigation