[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Metric embeddings of Laakso graphs into Banach spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let X be Banach space which is not super-reflexive. Then, for each \(n\ge 1\) and \(\varepsilon >0\), we exhibit metric embeddings of the Laakso graph \({\mathcal {L}}_n\) into X with distortion less than \(2+\varepsilon \) and into \(L_1[0,1]\) with distortion 4/3. The distortion of an embedding of \({\mathcal {L}}_2\) (respectively, the diamond graph \(D_2\)) into \(L_1[0,1]\) is at least 9/8 (respectively, 5/4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bourgain, J.: The metrical characterization of superreflexivity in Banach spaces. Isr. J. Math. 56, 222–230 (1986)

    Article  MATH  Google Scholar 

  2. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  3. Enflo, P.: Banach spaces which can be given an equivalent uniformly convex norm. Isr. J. Math. 13, 281–288 (1972)

    Article  MathSciNet  Google Scholar 

  4. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and \(\ell _1\)-embeddings of graphs. Combinatorica 24, 233–269 (2004). (Conference version in: 40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 399–408)

    Article  MathSciNet  MATH  Google Scholar 

  5. James, R.C.: Super-reflexive Banach spaces. Can. J. Math. 24, 896–904 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. James, R.C., Schaffer, J.J.: Super-reflexivity and the girth of spheres. Isr. J. Math. 11, 398–404 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, W.B., Schechtman, G.: Diamond graphs and super-reflexivity. J. Topol. Anal. 1, 177–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laakso, T.J.: Ahlfors \(Q\)-regular spaces with arbitrary \(Q > 1\) admitting weak Poincare inequality. Geom. Funct. Anal. 10, 111–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedic. 87, 285–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, J.R., Raghavendra, P.: Coarse differentiation and multi-flows in planar graphs. Discret. Comput. Geom. 43, 346–362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mikhail, I., Randrianantoanina, B.: A new approach to low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. J. Funct. Anal. 273, 598–651 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ostrovskii, M.I.: Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, de Gruyter Studies in Mathematics, vol. 49. Walter de Gruyter & Co., Berlin (2013)

    Book  MATH  Google Scholar 

  13. Pisier, G.: Martingales in Banach Spaces, Cambridge Stud. Adv. Math., vol. 155. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  14. Schaffer, J.J., Sundaresan, K.S.: Reflexivity and the girth of spheres. Math. Ann. 184, 163–168 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Swift, A.: A coding of bundle graphs and their embeddings into Banach spaces. Mathematika 64, 847–874 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Mikhail Ostrovskii for his comments and for drawing some references to our attention. S. J. Dilworth was supported by Simons Foundation Collaboration Grant no. 849142. Denka Kutzarova was supported by Simons Foundation Collaboration Grant no. 636954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Dilworth.

Additional information

Communicated by Mikhail Ostrovskii.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilworth, S.J., Kutzarova, D. & Stankov, S. Metric embeddings of Laakso graphs into Banach spaces. Banach J. Math. Anal. 16, 60 (2022). https://doi.org/10.1007/s43037-022-00212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00212-7

Keywords

Mathematics Subject Classification

Navigation