[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Survey on Cloud Computing Simulation and Modeling

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Cloud Computing (CC) has attracted a massive amount of research and investment in the previous decade. The economical model proposed by this technology is a viable solution for consumers as well as being a profitable one for the provider. However, deploying real world cloud experiments to test new policies/algorithms is time consuming and very expensive, especially for large scenarios. As a result, the research community has opted to test their contributions is CC simulators. Although the models proposed by these simulators are not exhaustive, each one is made to address a specific process. Alternatively, others tools are made to provide a platform and the necessary building blocks to model any desired sub-component (application/network model, energy consumption, scheduling and Virtual Machine provisioning). In this paper, a detailed survey about the existing CC simulators is made discussing features, software architecture as well as the ingenuity behind these frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Most of the simulators discussed in this paper are open source. Some simulators are proprietary such as MDCSim.

References

  1. Packet Tracer Website. www.cisco.com/web/learning/. Accessed 10 July 2017.

  2. Network Simulator 2 Website. http://www.isi.edu/nsnam/ns. Accessed 20 Sep 2019.

  3. Network Simulator 3 Website. https://www.nsnam.org/. Accessed 18 Sep 2019.

  4. OMNeT ++ Website. https://omnetpp.org/. Accessed 20 Mar 2019.

  5. Levis P, Lee N, Welsh M, Culler D. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In: Proceedings of the 1st international conference on Embedded networked sensor systems, 2003, https://doi.org/10.1145/958491.958506.

  6. Montresor A, Jelasity M. PeerSim: A scalable P2P simulator. In: IEEE Ninth International Conference on Peer-to-Peer Computing (P2P’09), 2009, https://doi.org/10.1109/P2P.2009.5284506.

  7. Buyya R, Murshed M. Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr Comput Pract Exp. 2002. https://doi.org/10.1002/cpe.710.

    Article  MATH  Google Scholar 

  8. Legrand A, Marchal L, Casanova H. Scheduling distributed applications: the simgrid simulation framework. In: Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003) IEEE., 2003, May, https://doi.org/10.1109/CCGRID.2003.1199362.

  9. Koomey J. Growth in data center electricity use 2005 to 2010. In: A report by Analytical Press, completed at the request of The New York Times, 9, 2011.

  10. Liu J, Zhao F, Liu X, He W. Challenges towards elastic power management in internet data centers. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS Workshops’ 09), 2009, June, https://doi.org/10.1109/ICDCSW.2009.44.

  11. Kaur G, Kaur K. An adaptive firefly algorithm for load balancing in cloud computing. In: Proceedings of Sixth International Conference on soft computing for problem solving, Springer, Singapore, 2017, https://doi.org/10.1007/978-981-10-3322-3\_7.

  12. Sun DW, Chang GR, Gao S, Jin LZ, Wang XW. Modeling a dynamic data replication strategy to increase system availability in cloud computing environments. J Comput Sci Technol. 2012;27:256–72. https://doi.org/10.1007/s11390-012-1221-4.

    Article  MATH  Google Scholar 

  13. Khosravi A, Garg SK, Buyya R. Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: European Conference on parallel processing. Springer, Berlin, Heidelberg, 2013, August, https://doi.org/10.1007/978-3-642-40047-6\_33.

  14. Zhao W, Peng Y, Xie F, Dai Z. Modeling and simulation of cloud computing: a review. In: Cloud Computing Congress (APCloudCC), IEEE, Asia Pacific, 2012, November, https://doi.org/10.1109/APCloudCC.2012.6486505.

  15. Bahwaireth K, Benkhelifa E, Jararweh Y, Tawalbeh MA. Experimental comparison of simulation tools for efficient cloud and mobile cloud computing applications. EURASIP J Inf Secur. 2016. https://doi.org/10.1186/s13635-016-0039-y.

    Article  Google Scholar 

  16. Byrne J, Svorobej S, Giannoutakis K, Tzovaras D, Byrne PJ, Ostberg PO, Gourinovitch A, Lynn T. a review of cloud computing simulation platforms and related environments. CLOSER. 2017. https://doi.org/10.5220/0006373006790691.

    Article  Google Scholar 

  17. Fakhfakh F, Kacem HH, Kacem AH. Simulation tools for cloud computing: A survey and comparative study. In: 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 2017, pp. 221–226. IEEE. https://doi.org/10.1109/ICIS.2017.7959997.

  18. Makaratzis AT, Giannoutakis KM, Tzovaras D. Energy modeling in cloud simulation frameworks. Future Gener Comput Syst. 2018. https://doi.org/10.1016/j.future.2017.06.016.

    Article  Google Scholar 

  19. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R. Quality of Experience (QoE)-aware placement of applications in Fog computing environments. J Parallel Distrib Comput. 2019;132:190–203. https://doi.org/10.1016/j.jpdc.2018.03.004.

    Article  Google Scholar 

  20. Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Clust Comput. 2019;22(4):8319–34. https://doi.org/10.1007/s10586-018-1769-z.

    Article  Google Scholar 

  21. Alresheedi SS, Lu S, Elaziz MA, Ewees AA. Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Human-centric Comput Inf Sci. 2019;9(1):15. https://doi.org/10.1186/s13673-019-0174-9.

    Article  Google Scholar 

  22. Zhang H, Shi J, Deng B, Jia G, Han G, Shu L. MCTE: minimizes task completion time and execution cost to optimize scheduling performance for smart grid cloud. IEEE Access. 2019;7:134793–803. https://doi.org/10.1109/ACCESS.2019.2942067.

    Article  Google Scholar 

  23. Singh BP, Kumar SA, Gao XZ, Kohli M, Katiyar S. A study on energy consumption of DVFS and Simple VM consolidation policies in cloud computing data centers using CloudSim Toolkit. Wirel Pers Commun. 2020. https://doi.org/10.1007/s11277-020-07070-2.

    Article  Google Scholar 

  24. Garg D, Kumar P. Evaluation and improvement of load balancing using proposed cuckoo search in CloudSim. In: International Conference on advanced informatics for computing research, 2019, pp 343–358, Springer, Singapore, https://doi.org/10.1007/978-981-15-0108-1_32.

  25. Annamalai S, Udendhran R (2019) Role of Cloud Computing in On-Line Social Networking and In-Depth Analysis of Cloud-Sim Simulator. In: Novel Practices and Trends in Grid and Cloud Computing, p. 34–46. IGI Global. https://doi.org/10.4018/978-1-5225-9023-1.ch003.

  26. Xue F, Su Q. Intelligent task scheduling strategy for cloud robot based on parallel reinforcement learning. Int J Wirel Mobile Comput. 2019;17(3):293–9. https://doi.org/10.1504/IJWMC.2019.102257.

    Article  Google Scholar 

  27. Naranjo PGV, Pooranian Z, Shojafar M, Conti M, Buyya R. FOCAN: a Fog-supported smart city network architecture for management of applications in the Internet of Everything environments. J Parallel Distrib Comput. 2019;132:274–83. https://doi.org/10.1016/j.jpdc.2018.07.003.

    Article  Google Scholar 

  28. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp. 2011. https://doi.org/10.1002/spe.995.

    Article  Google Scholar 

  29. Alves DC, Batista BG, Leite Filho DM, Peixoto ML, Reiff-Marganiec S, Kuehne BT. CM cloud simulator: a cost model simulator module for Cloudsim. In: 2016 IEEE World Congress on Services (SERVICES), 2016, June, https://doi.org/10.1109/SERVICES.2016.20.

  30. Ostermann S, Plankensteiner K, Prodan R, Fahringer T. GroudSim: an event-based simulation framework for computational grids and clouds. In: European Conference on parallel processing, Springer, Berlin, Heidelberg, 2010, August, https://doi.org/10.1007/978-3-642-21878-1\_38.

  31. Blaha P, Schwarz K, Luitz J. A full potential linearized augmented plane wave package for calculating crystal properties, WIEN97. Wien: Karlheinz Schwarz, Techn. Universitat Wien, Austria; 1999.

    Google Scholar 

  32. Cotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, Nicholls ME, Carrio GG, McFadden JP. RAMS 2001: current status and future directions. Meteorol Atmos Phys. 2003. https://doi.org/10.1007/s00703-001-0584-9.

    Article  Google Scholar 

  33. Wickremasinghe B, Calheiros RN, Buyya R. Cloudanalyst: a cloudsim-based visual modeller for analysing cloud computing environments and applications. In: Proceedings of 24th IEEE International Conference on advanced information networking and applications (AINA), 2010, April, https://doi.org/10.1109/AINA.2010.32.

  34. Nunez A, Vazquez-Poletti JL, Caminero AC, Castané GG, Carretero J, Llorente IM. iCanCloud: a flexible and scalable cloud infrastructure simulator. J Grid Comput. 2012. https://doi.org/10.1007/s10723-012-9208-5.

    Article  Google Scholar 

  35. Romero P, Barderas G, Vazquez-Poletti JL, Llorente IM. Spatial chronogram to detect Phobos eclipses on Mars with the MetNet Precursor Lander. Planet Sp Sci. 2011. https://doi.org/10.1016/j.pss.2011.06.020.

    Article  Google Scholar 

  36. Vazquez-Poletti JL, Barderas G, Llorente IM, Romero P. A model for efficient onboard actualization of an instrumental cyclogram for the mars metnet mission on a public cloud infrastructure. in: proceedings of the international workshop on applied Parallel Computing, Springer, Berlin, Heidelberg, 2010, June, https://doi.org/10.1007/978-3-642-28151-8\_4.

  37. Kathiravelu P, Veiga L. An adaptive distributed simulator for cloud and mapreduce algorithms and architectures. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on utility and cloud computing (UCC), 2014, December, https://doi.org/10.1109/UCC.2014.16.

  38. Sotiriadis S, Bessis N, Antonopoulos N, Anjum A. SimIC: Designing a new inter-cloud simulation platform for integrating large-scale resource management. In: Proceedings of the 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 2013, March, https://doi.org/10.1109/AINA.2013.123.

  39. jFreeChart package. http://www.jfree.org/jfreechart/. Accessed 25 July 2017.

  40. Alwabel A, Walters RJ, Wills, G. DesktopCloudSim: simulation of node failures in the cloud. In: Cloud Computing 2015: the sixth international conference on cloud computing, GRIDs, and virtualization. Nice, France; 2015.

  41. Gupta H, Dastjerdi AV, Ghosh SK, Buyya R. ifogsim: A toolkit for modeling and simulation of resource management techniques in internet of things, edge and fog computing environments. Softw Pract Exp. 2016. https://doi.org/10.1002/spe.2509.

    Article  Google Scholar 

  42. Elahi B, Malik AW, Rahman AU, Khan MA. Toward scalable cloud data center simulation using high-level architecture. Softw Pract Exp. 2020;50(6):827–43. https://doi.org/10.1002/spe.2769.

    Article  Google Scholar 

  43. 1516.1-2010. IEEE Standard for modeling and simulation (M&S) High Level Architecture (HLA)–federate interface specification. https://standards.ieee.org/standard/1516_1-2010.html. Accessed 04 June 2020.

  44. Jeon H, Cho C, Shin S, Yoon S. A CloudSim-Extension for Simulating Distributed Functions-as-a-Service. In: 2019 20th International Conference on parallel and distributed computing, applications and technologies (PDCAT), 2019, pp 386–391, IEEE,. https://doi.org/10.1109/PDCAT46702.2019.00076.

  45. Sriram I. SPECI, a simulation tool exploring cloud-scale data centers. Cloud Comput. 2009. https://doi.org/10.1007/978-3-642-10665-1\_35.

    Article  Google Scholar 

  46. Buss A. Component based simulation modeling with Simkit. In: Proceedings of the Winter Simulation Conference, 2002, December, https://doi.org/10.1109/WSC.2002.1172891.

  47. Cartlidge J, Cliff D. Comparison of cloud middleware protocols and subscription network topologies using CReST, the cloud research simulation toolkit-the three truths of cloud computing are: hardware fails, software has bugs, and people make mistakes. In: CLOSER, pp 58–68, May 2013.

  48. Son J, Dastjerdi AV, Calheiros RN, Ji X, Yoon Y, Buyya R. Cloudsimsdn: modeling and simulation of software-defined cloud data centers. In: Proceedings of 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015, May, https://doi.org/10.1109/CCGrid.2015.87.

  49. Lantz B, Heller B, McKeown N. A network in a laptop: rapid prototyping for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, October, https://doi.org/10.1145/1868447.1868466.

  50. Lim SH, Sharma B, Nam G, Kim EK, Das CR. MDCSim: a multi-tier data center simulation, platform. In: Proceedings of IEEE International Conference on Cluster Computing and Workshops (CLUSTER’09), August 2009. https://doi.org/10.1109/CLUSTR.2009.5289159.

  51. Mesquite Software, CSIM, http://www.mesquite.com. Accessed 17 Sep 2017.

  52. Wang Z, Zhu X, McCarthy C, Ranganathan P, Talwar V. Feedback control algorithms for power management of servers. In: Third International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks, 2008, June.

  53. Amza C, Cecchet E, Chanda A, Elnikety S, Cox A, Gil R, Marguerite J, Rajamani K, Zwaenepoel W. Bottleneck characterization of dynamic web site benchmarks, TR02-388, Rice University, 2002, https://hdl.handle.net/1911/96296. Accessed 16 Sep 2017.

  54. Kliazovich D, Bouvry P, Audzevich Y, Khan SU. GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J Supercomput. 2012. https://doi.org/10.1007/s11227-010-0504-1.

    Article  Google Scholar 

  55. Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F. Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: 5th USENIX Symposium on networked systems design and implementation, Vol. 8, pp. 337-350, 2008, April.

  56. Shang L, Peh LS, Jha NK. Dynamic voltage scaling with links for power optimization of interconnection networks. In: Proceedings of the Ninth International Symposium on high-performance computer architecture, (HPCA-9 2003), 2003, February, https://doi.org/10.1109/HPCA.2003.1183527.

  57. Kurowski K, Oleksiak A, Piatek W, Piontek T, Przybyszewski A, Weglarz J. DCworms—a tool for simulation of energy efficiency in distributed computing infrastructures. Simul Model Pract Theory. 2013. https://doi.org/10.1016/j.simpat.2013.08.007.

    Article  Google Scholar 

  58. Bak S, Krystek M, Kurowski K, Oleksiak A, Piatek W, Waglarz J. Gssim–a tool for distributed computing experiments. Sci Progr. 2011. https://doi.org/10.3233/SPR-2011-0332.

    Article  Google Scholar 

  59. Tar- data archiving software, http://www.gnu.org/software/tar/. Accessed 12 Dec 2017.

  60. Abinit. http://www.abinit.org/. Accessed 12 Dec 2017.

  61. vor dem Berge M, Da Costa G, Kopecki A, Oleksiak A, Pierson JM, Piontek T, Volk E, Wesner S. Modeling and simulation of data center energy-efficiency in coolemall. In: International Workshop on energy efficient data centers, 2012, https://doi.org/10.1007/978-3-642-33645-4\_3.

  62. Castané GG, Nunez A, Llopis P, Carretero J. E-mc2: a formal framework for energy modelling in cloud computing. Simul Model Pract Theory. 2013. https://doi.org/10.1016/j.simpat.2013.05.002.

    Article  Google Scholar 

  63. Sa TT, Calheiros RN, Gomes DG. CloudReports: An extensible simulation tool for energy-aware cloud computing environments. In: Cloud Computing, Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-10530-7\_6.

  64. Malik AW, Bilal K, Aziz K, Kliazovich D, Ghani N, Khan SU, Buyya R. Cloudnetsim ++: a toolkit for data center simulations in omnet ++. In: Proceedings of the 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), 2014, December, https://doi.org/10.1109/HONET.2014.7029371.

  65. Bilal K, Khan SU, Madani SA, Hayat K, Khan MI, Min-Allah N, Kolodziej J, Wang L, Zeadally S, Chen D. A survey on green communications using adaptive link rate. Cluster Comput. 2013. https://doi.org/10.1007/s10586-012-0225-8.

    Article  Google Scholar 

  66. Gupta SK, Banerjee A, Abbasi Z, Varsamopoulos G, Jonas M, Ferguson J, Gilbert RR, Mukherjee T. Gdcsim: a simulator for green data center design and analysis. ACM Trans Model Comput Simul (TOMACS). 2014. https://doi.org/10.1145/2553083.

    Article  Google Scholar 

  67. Tang , Mukherjee, T, Gupta SK, Cayton P. Sensor-based fast thermal evaluation model for energy efficient high-performance datacenters. In: Proceedings of the Fourth International Conference on intelligent sensing and information processing (ICISIP 2006), 2006, October, https://doi.org/10.1109/ICISIP.2006.4286097.

  68. Louis B, Mitra K, Saguna S, Ahlund C. Cloudsimdisk: Energy-aware storage simulation in cloudsim. In: Proceedings of the 2015 IEEE/ACM 8th International Conference on utility and cloud computing (UCC), 2015, December, https://doi.org/10.1109/UCC.2015.15.

  69. Kecskemeti G. DISSECT-CF: a simulator to foster energy-aware scheduling in infrastructure clouds. Simul Model Pract Theory. 2015. https://doi.org/10.1016/j.simpat.2015.05.009.

    Article  Google Scholar 

  70. Tighe M, Keller G, Bauer M, Lutfiyya H. DCSim: A data center simulation tool for evaluating dynamic virtualized resource management. In: Network and service management (cnsm), 2012 8th international conference and 2012 workshop on systems virtualiztion management (svm), pp. 385–392, 2012, October.

  71. Tian W, Zhao Y, Xu M, Zhong Y, Sun X. A toolkit for modeling and simulation of real-time virtual machine allocation in a cloud data center. IEEE Trans Autom Sci Eng. 2015. https://doi.org/10.1109/TASE.2013.2266338.

    Article  Google Scholar 

  72. Hirofuchi T, Lebre A, Pouilloux L. SimGrid VM: virtual machine support for a simulation framework of distributed systems. IEEE Trans Cloud Comput. 2015. https://doi.org/10.1109/TCC.2015.2481422.

    Article  Google Scholar 

  73. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A. Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on networked systems design & implementation-volume 2, USENIX Association, pp. 273–286, 2005, May.

  74. Lebre A, Pastor J, Sudholt M. VMPlaceS: a generic tool to investigate and compare VM placement algorithms. In: Proceedings of Euro-Par 2015: parallel processing, 2015, August, https://doi.org/10.1007/978-3-662-48096-0\_25.

  75. Feller E, Rilling L, Morin C. Snooze: A scalable and autonomic virtual machine management framework for private clouds. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), IEEE Computer Society, 2012, May, https://doi.org/10.1109/CCGrid.2012.71.

  76. Quesnel F, Lèbre A, Südholt M. Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS. Concurr Comput Pract Exp. 2013. https://doi.org/10.1002/cpe.2848.

    Article  Google Scholar 

  77. Bux M, Leser U. Dynamiccloudsim: simulating heterogeneity in computational clouds. Future Gener Comput Syst. 2015. https://doi.org/10.1016/j.future.2014.09.007.

    Article  Google Scholar 

  78. Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements in the cloud: observing, analyzing, and reducing variance. In: Proceedings of the VLDB Endowment, 2010, https://doi.org/10.14778/1920841.1920902.

  79. Dejun J, Pierre G, Chi CH. EC2 performance analysis for resource provisioning of service-oriented applications. In: Proceedings of 2009 Workshops Service-Oriented Computing (ICSOC/ServiceWave), Springer Berlin/Heidelberg, 2010, https://doi.org/10.1007/978-3-642-16132-2\_19.

  80. Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distrib Syst. 2002. https://doi.org/10.1109/71.993206.

    Article  Google Scholar 

  81. Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica, I. Improving MapReduce performance in heterogeneous environments. In: 8th USENIX Symposium on Operating Systems Design and Implementation, Vol. 8 No. 4, p. 7, 2008, December.

  82. Berriman GB, Deelman E, Good J, Jacob J, Katz DS, Kesselman C, Laity A, Prince TA, Singh G, Su M. Montage: a grid-enabled engine for delivering custom science-grade mosaics on demand. In: Proceedings of the SPIE Conference on Astronomical Telescopes and Instrumentation, Glasgow, Scotland, 2004, https://doi.org/10.1117/12.550551.

  83. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2014. https://doi.org/10.1093/bib/bbs086.

    Article  Google Scholar 

  84. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, Wright NJ. Performance analysis of high performance computing applications on the amazon web services cloud. In: IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), 2010, November, https://doi.org/10.1109/CloudCom.2010.69.

  85. Chainbi W, Chihi H, Azaiez M. ATAC4Cloud: a framework for modeling and simulating autonomic cloud. Soft Comput. 2017. https://doi.org/10.1007/s00500-016-2451-0.

    Article  Google Scholar 

  86. Rahman UU, Bilal K, Erbad A, Khalid O, Khan SU. Nutshell—simulation toolkit for modeling data center networks and cloud computing. IEEE Access. 2019;7:19922–42. https://doi.org/10.1109/ACCESS.2019.2894725.

    Article  Google Scholar 

  87. Siavashi A, Momtazpour M. GPUCloudSim: an extension of CloudSim for modeling and simulation of GPUs in cloud data centers. J Supercomput. 2019;75(5):2535–61. https://doi.org/10.1007/s11227-018-2636-7.

    Article  Google Scholar 

  88. Hu Q, Shu J, Fan J, Lu Y. Part-time performance estimation and fairness-oriented scheduling policy for concurrent GPGPU applications. In: 2016 45th International Conference on Parallel Processing (ICPP), 2016, pp. 57–66, IEEE, https://doi.org/10.1109/ICPP.2016.14.

  89. Desprez F, Rouzaud-Cornabas J. SimGrid Cloud Broker: simulating the Amazon AWS Cloud (Doctoral dissertation, INRIA), 2013. https://hal.inria.fr/hal-00909120/. Accessed 05 Sep 2017.

  90. Pittl B, Mach W, Schikuta, E. Bazaar-extension: A cloudsim extension for simulating negotiation based resource allocations. In: Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), 2016, June, https://doi.org/10.1109/SCC.2016.62.

  91. Bonacquisto P, Di Modica G, Petralia G, &Tomarchio O. A strategy to optimize resource allocation in auction-based cloud markets. In: Proceedings of the 2014 IEEE International Conference on Services Computing (SCC), 2014, June, https://doi.org/10.1109/SCC.2014.52.

  92. F(X)yz by Birdasaur.http://birdasaur.github.io/FXyz/. Accessed 28 Sep 2017.

  93. Garg SK, Buyya R. Networkcloudsim: Modelling parallel applications in cloud simulations. In: Proceedings of the 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC), 2011, December, https://doi.org/10.1109/UCC.2011.24.

  94. Shiraz M, Gani A, Khokhar RH, Ahmed E. An extendable simulation framework for modeling application processing potentials of smart mobile devices for mobile cloud computing. In: Proceedings of the 2012 10th International Conference on Frontiers of Information Technology (FIT), 2012, December, https://doi.org/10.1109/FIT.2012.66.

  95. Chen W, Deelman E. Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In: Proceedings of the 2012 IEEE 8th International Conference on E-Science (e-Science), 2012, October, https://doi.org/10.1109/eScience.2012.6404430.

  96. Calheiros RN, Netto MA, De Rose CA, Buyya R. EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of cloud computing applications. Softw Pract Exp. 2012. https://doi.org/10.1002/spe.2124.

    Article  Google Scholar 

  97. Calheiros RN, Buyya R, De Rose CAF. Building an automated and self-configurable emulation testbed for grid applications. Softw Pract Exp. 2010. https://doi.org/10.1002/spe.964.

    Article  Google Scholar 

  98. Emeakaroha VC, Calheiros RN, Netto MAS, Brandic I, De Rose CAF. DeSVi: an architecture for detecting SLA violations in cloud computing infrastructures. In: Proceedings of the 2nd International ICST Conference on Cloud Computing (CloudComp’10), 2010.

  99. Jararweh Y, Jarrah M, Alshara Z, Alsaleh MN, Al-Ayyoub M. CloudExp: a comprehensive cloud computing experimental framework. Simul Model Pract Theory. 2014. https://doi.org/10.1016/j.simpat.2014.09.003.

    Article  Google Scholar 

  100. Beitch A, Liu B, Yung T, Griffith R, Fox A, Patterson DA. Rain: A workload generation toolkit for cloud computing applications. University of California, Tech. Rep. UCB/EECS-2010-14, 2010.

  101. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S. BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput Commun Rev. 2009. https://doi.org/10.1145/1592568.1592577.

    Article  Google Scholar 

  102. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. Dcell: a scalable and fault-tolerant network structure for data centers. In: ACM SIGCOMM Computer Communication Review, 2008, August, https://doi.org/10.1145/1402958.1402968.

  103. Di S, Cappello F. GloudSim: Google trace based cloud simulator with virtual machines. Softw Pract Exp. 2015. https://doi.org/10.1002/spe.2303.

    Article  Google Scholar 

  104. Higashino WA, Capretz MA, Bittencourt LF. CEPSim: modelling and simulation of complex event processing systems in cloud environments. Future Gener Comput Syst. 2016. https://doi.org/10.1016/j.future.2015.10.023.

    Article  Google Scholar 

  105. Powersmiths, Powersmiths WOW—build a more sustainable future. http://www.powersmithswow.com/. Accessed 11 Aug 2017.

  106. Alwasel K, Calheiros RN, Garg S, Buyya R, Ranjan R (2019) BigDataSDNSim: a simulator for analyzing big data applications in software-defined cloud data centers. arXiv preprint arXiv:1910.04517.

  107. Zeng X, Garg SK, Strazdins P, Jayaraman PP, Georgakopoulos D, Ranjan R. IOTSim: a simulator for analysing IoT applications. J Syst Architect. 2017;72:93–107. https://doi.org/10.1016/j.sysarc.2016.06.008.

    Article  Google Scholar 

  108. Barika M, Garg S, Chan A, Calheiros RN, Ranjan R. IoTSim-stream: modelling stream graph application in cloud simulation. Future Gener Comput Syst. 2019;99:86–105. https://doi.org/10.1016/j.future.2019.04.004.

    Article  Google Scholar 

  109. Moore JD, Chase JS, Ranganathan P, Sharma RK. Making Scheduling “Cool”: temperature-aware workload placement in data centers. In: USENIX Annual Technical Conference, General Track, 2005, Apr, pp 61–75.

Download references

Funding

The author received no funding to accomplish this work.

Author information

Authors and Affiliations

Authors

Contributions

The author conducted the entire survey solely. The proposed work encompasses collecting and reviewing papers as well investigating simulators architectures.

Corresponding author

Correspondence to Ilyas Bambrik.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bambrik, I. A Survey on Cloud Computing Simulation and Modeling. SN COMPUT. SCI. 1, 249 (2020). https://doi.org/10.1007/s42979-020-00273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00273-1

Keywords

Navigation