[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Survey of Safety Management Approaches to Unmanned Aerial Vehicles and Enabling Technologies

  • Review paper
  • Published:
Journal of Communications and Information Networks

Abstract

Unmanned aerial vehicle (UAV) has a rapid development over the last decade. However, an increasing number of severe flight collision events caused by explosive growth of UAV have drawn widespread concern. It is an important issue to investigate safety management approaches of UAVs to ensure safe and efficient operation. In this paper, we present a comprehensive overview of safety management approaches in large, middle and small scales. In large-scale safety management, path-planning problem is a crucial issue to ensure safety and ordered operation of UAVs globally. In middle-scale safety management, it is an important issue to study the conflict detection and resolution methods. And in small-scale safety management, real-time collision avoidance is the last line of ensuring safety. Moreover, a UAV can be regarded as a terminal device connected through communication and information network. Therefore, the enabling technologies, such as sensing, command and control communication, and collaborative decision-making control technology, have been studied in the last.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Angelov. Sense and avoid in UAS [M]. P. Angelov, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2012.

  2. K. P. Valavanis, G. J. Vachtsevanos. Handbook of unmanned aerial vehicles [M]. 1st ed. Springer Netherlands, 2015.

    Book  Google Scholar 

  3. K. Dalamagkidis, K. Valavanis, L. Piegl. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the national airspace system [J]. Prog. Aerosp. Sci., 2008, 44(7-8): 503–519.

    Article  Google Scholar 

  4. J. Kuchar, L. Yang. A review of conflict detection and resolution modeling methods [J]. IEEE Trans. Intell. Transp. Syst., 2000, 1(4): 179–189.

    Article  Google Scholar 

  5. X. Yu, Y. Zhang. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects [J]. Prog. Aerosp. Sci., 2015, 74(3): 152–166.

    Article  Google Scholar 

  6. B. M. Albaker, N. A. Rahim. Unmanned aircraft collision detection and resolution: Concept and survey [C]//2010 5th IEEE Conf. Ind. Electron. Appl., Taichung, Taiwan, China, 2010: 248–253.

    Google Scholar 

  7. A. Tsourdos, B. White, M. Shanmugavel. Cooperative path planning of unmanned aerial vehicles [M]. Chichester, UK: John Wiley & Sons, Ltd, 2010.

    Book  Google Scholar 

  8. C. W. Zheng, L. Li, F. J. Xu, et al. Evolutionary route planner for unmanned air vehicles [J]. IEEE Trans. Robot., 2005, 21(4): 609–620.

    Article  Google Scholar 

  9. M. Hwangbo, J. Kuffner, T. Kanade. Efficient two-phase 3D motion planning for small fixed-wing UAVs [C]//Proc. 2007 IEEE Int. Conf. Robot. Autom., Roma, Italy, 2007: 1035–1041.

    Chapter  Google Scholar 

  10. B. B. Meng, X. Gao. UAV path planning based on bidirectional sparse A* search algorithm [C]//2010 Int. Conf. Intell. Comput. Technol. Autom., Changsha, 2010: 1106–1109.

    Google Scholar 

  11. J. H. Chuang, N. Ahuja. An analytically tractable potential field model of free space and its application in obstacle avoidance [J]. IEEE Trans. Syst. Man Cybern. Part B, 1998, 28(5): 729–736.

    Article  Google Scholar 

  12. A. A. Masoud. Motion planning with gamma-harmonic potential fields [J]. IEEE Trans. Aerosp. Electron. Syst., 2012, 48(4): 2786–2801.

    Article  Google Scholar 

  13. O. Cetin, I. Zagli, G. Yilmaz. Establishing obstacle and collision free communication relay for UAVs with artificial potential fields [J]. J. Intell. Robot. Syst., 2013, 69(1-4): 361–372.

    Article  Google Scholar 

  14. S. E. Campbell, M. B. Bragg, N. A. Neogi. Fuel-optimal trajectory generation for persistent contrail mitigation [J]. J. Gud. Control. Dyn., 2013, 36(6): 1741–1750.

    Article  Google Scholar 

  15. A. U. Raghunathan, V. Gopal, D. Subramanian, et al. Dynamic optimization strategies for three-dimensional conflict resolution ofmultiple aircraft [J]. J. Guid. Control. Dyn., 2004, 27(4): 586–594.

    Article  Google Scholar 

  16. T. R. Jorris, R. G. Cobb. multiple method 2-D trajectory optimization satisfying waypoints and no-fly zone constraints [J]. J. Guid. Control. Dyn., 2008, 31(3): 543–553.

    Article  Google Scholar 

  17. S. Griffiths, J. Saunders, A. Curtis, et al. Maximizing miniature aerial vehicles [J]. IEEE Robot. Autom. Mag., 2006, 13(3): 34–43.

    Article  Google Scholar 

  18. M. Kothari, I. Postlethwaite. A probabilistically robust path planning algorithm for UAVs using rapidly-exploring Rrandom trees [J]. J. Intell. Robot. Syst., 2013, 71(2): 231–253.

    Article  Google Scholar 

  19. J. Kuffner, S. LaValle. RRT-connect: An efficient approach to singlequery path planning [C]//Proc. 2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom. Symp. Proc. (Cat. No. 00CH37065), San Francisco, 2000, 2(4): 995–1001.

    Google Scholar 

  20. I. Nikolos, K. Valavanis, N. Tsourveloudis, et al. Evolutionary algorithm based offline/online path planner for uav navigation [J]. IEEE Trans. Syst. Man Cybern. Part B, 2003, 33(6): 898–912.

    Article  Google Scholar 

  21. Y. V. Pehlivanoglu. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV [J]. Aerosp. Sci. Technol., 2012, 16(1): 47–55.

    Article  Google Scholar 

  22. Y. Fu, M. Ding, C. Zhou. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV [J]. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, 2012, 42(2): 511–526.

    Article  Google Scholar 

  23. Y. Fu, M. Ding, C. Zhou, et al. Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization [J]. IEEE Trans. Syst. Man, Cybern. Syst., 2013, 43(6): 1451–1465.

    Article  Google Scholar 

  24. C. Xu, H. Duan, F. Liu. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning [J]. Aerosp. Sci. Technol., 2010, 14(8): 535–541.

    Article  Google Scholar 

  25. K. Zeghal. A review of different approaches based on force fields for airborne conflict resolution [C]//Guid. Navig. Control Conf. Exhib. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998: 818–827.

    Google Scholar 

  26. J. Hu, M. Prandini, S. Sastry. Optimal coordinated maneuvers for three-dimensional aircraft conflict resolution [J]. J. Guid. Control. Dyn., 2002, 25(5): 888–900.

    Article  Google Scholar 

  27. J. W. Park, H. D. Oh, M. J. Tahk. UAV collision avoidance based on geometric approach [C]//2008 SICE Annu. Conf., Tokyo, 2008: 2122–2126.

    Chapter  Google Scholar 

  28. L. Pallottino, E. Feron, A. Bicchi. Conflict resolution problems for air traffic management systems solved with mixed integer programming [J]. IEEE Trans. Intell. Transp. Syst., 2002, 3(1): 3–11.

    Article  Google Scholar 

  29. J. Rong, S. J. Geng, J. Valasek, et al. Air traffic conflict negotiation and resolution using an onboard multi-agent system [C]//Proceedings. 21st Digit. Avion. Syst. Conf., Irvine, CA, 2002: 1–12.

    Google Scholar 

  30. S. Wollkind, J. Valasek, T. Ioerger. Automated conflict resolution for air traffic management using cooperative multiagent negotiation [C]//AIAA Guid. Navig. Control Conf. Exhib., Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004, 4992(8): 1–11.

    Google Scholar 

  31. D. Sislak, P. Volf, M. Pechoucek. Agent-based cooperative decentralized airplane-collision avoidance [J]. IEEE Trans. Intell. Transp. Syst., 2011, 12(1): 36–46.

    Article  Google Scholar 

  32. S. Bortoff. Path planning for UAVs [C]//Proc. 2000 Am. Control Conf. ACC (IEEE Cat. No.00CH36334), Chicago, 2000(1): 364–368.

    Article  Google Scholar 

  33. T. McLain, R. Beard. Trajectory planning for coordinated rendezvous of unmanned air vehicles [C]//AIAA Guid. Navig. Control Conf. Exhib., Dever, CO, U.S.A., 2000: A00–37126.

    Google Scholar 

  34. L. Zhu, X. Cheng, F. G. Yuan. A 3D collision avoidance strategy for UAV with physical constraints [J]. Measurement, 2016, 77: 40–49.

    Article  Google Scholar 

  35. J. Sun, J. Tang, S. Lao. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm [J]. IEEE Access, 2017, (5):18382–18390.

    Article  Google Scholar 

  36. D. McIntyre, W. Naeem, X. Xu. Cooperative obstacle avoidance using bidirectional artificial potential fields [C]//2016 UKACC Int. Conf. Control, Belfast, 2016: 1–6.

    Google Scholar 

  37. O. Montiel, U. Orozco-Rosas, R. Sepúlveda. Path planning for mobile robots using bacterial ptential field for avoiding static and dynamic obstacles [J]. Expert Syst. Appl., 2015, 42(12): 5177–5191.

    Article  Google Scholar 

  38. K. D. Bilimoria. A geometric optimization approach to aircraft conflict resolution [J]. AIAA Guid. Navig. Control Conf. Exhib., 2000.

    Google Scholar 

  39. D. Alejo, J. A. Cobano, G. Heredia, et al. A reactive method for collision avoidance in industrial environments [J]. J. Intell. Robot. Syst. Theory Appl., 2016, 84(1-4): 745–758.

    Article  Google Scholar 

  40. Y. I. Jenie, E. J. van Kampen, C. C. de Visser, et al. Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles [J]. J. Guid. Control. Dyn., 2015, 38(6): 1140–1146.

    Article  Google Scholar 

  41. Y. Watanabe, A. Calise, E. Johnson. Vision-based obstacle avoidance for UAVs [J]. AIAA Guid. Navig. Control Conf. Exhib., 2007.

    Google Scholar 

  42. C. Carbone, U. Ciniglio, F. Corraro, et al. A novel 3D geometric algorithm for aircraft autonomous collision avoidance [C]//Proc. 45th IEEE Conf. Decis. Control, San Diego, 2006: 1580–1585.

    Google Scholar 

  43. J. Yang, D. Yin, L. Shen. Reciprocal geometric conflict resolution on unmanned aerial vehicles by heading control [J]. J. Guid. Control. Dyn., 2017, 40(10): 2511–2523.

    Article  Google Scholar 

  44. S. C. Han, H. Bang, C. S. Yoo. Proportional navigation-based collision avoidance for UAVs [J]. Int. J. Control. Autom. Syst., 2009, 7(4): 553–565.

    Article  Google Scholar 

  45. H. CHOI, Y. KIM, Y. LEE, et al. A reactive collision avoidance algorithm for multiple midair unmanned aerial vehicles [J]. Trans. Jpn. Soc. Aeronaut. Space Sci., 2013, 56(1): 15–24.

    Article  Google Scholar 

  46. E. Lalish, K. A. Morgansen, T. Tsukamaki. Decentralized reactive collision avoidance for multiple unicycle-type vehicles [C]//Proc. Am. Control Conf., Seattle, 2008: 5055–5061.

    Google Scholar 

  47. S. Temizer, M. Kochenderfer, L. Kaelbling, et al. Collision avoidance for unmanned aircraft using Markov decision processes [C]//AIAA Guid. Navig. Control Conf., Toronto, ON, Canada, 2010: 1–22.

    Google Scholar 

  48. J. P. Chryssanthacopoulos, M. J. Kochenderfer. Decomposition methods for optimized collision avoidance with multiple threats [C]//AIAA/IEEE Digit. Avion. Syst. Conf. Proc., Seattle, WA, USA, 2011: 1B2–1.

    Google Scholar 

  49. M. J. Kochenderfer, J. Chryssanthacopoulos. Robust airborne collision avoidance through dynamic programming [R]. Massachusetts Institute of Technology, Lincoln Laboratory, Project Report ATC-371, 2011.

    Google Scholar 

  50. Y. Lin, S. Saripalli. Sampling-based path planning for UAV collision avoidance [J]. IEEE Trans. Intell. Transp. Syst., 2017, 18(11): 3179–3192.

    Article  Google Scholar 

  51. H. T. Chiang, N. Malone, K. Lesser, et al. Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments [C]//IEEE Int. Conf. Robot. Autom., Seattle, 2015: 2347–2354.

    Google Scholar 

  52. X. Ren, S. Liu. Combining extended Kalman filter with complementary filter for UAV attitude estimation based on MEMSMARG sensors [C]//Int. ForumManag. Educ. Inf. Technol. Appl., Guangzhou, China, 2016: 746–752.

    Google Scholar 

  53. T. Zsedrovits, P. Bauer, A. Hiba, et al. Performance analysis of camera rotation estimation algorithms in multi-sensor fusion for unmanned aircraft attitude estimation [J]. Intell. Robot. Syst., 2016, 84(1-4): 1–19.

    Article  Google Scholar 

  54. J. N. Gross, Y. Gu, M. B. Rhudy. Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging [J]. IEEE Trans. Autom. Sci. Eng., 2015, 12(3): 935–944.

    Article  Google Scholar 

  55. N. Gageik, P. Benz, S. Montenegro. Obstacle detection and collision avoidance for a UAV with complementary cow-cost sensors [J]. IEEE Access, 2015, 3: 599–609.

    Article  Google Scholar 

  56. S. Zhu, D. Wang, B. L. Chang. Cooperative control of multiple UAVs for moving source seeking [J]. J. Intell. Robot. Syst., 2014, 74(1-2): 333–346.

    Article  Google Scholar 

  57. R. Zou, V. Kalivarapu, E. Winer, et al. Particle swarm optimizationbased source seeking [J]. IEEE Trans. Autom. Sci. Eng., 2015, 12(3): 865–875.

    Article  Google Scholar 

  58. G. Feng, Y. He, J. Han. Active persistent localization of a threedimensional moving target under set-membership uncertainty description through cooperation of multiple mobile robots [J]. IEEE Trans. Ind. Electron., 2015, 62(8): 4958–4971.

    Article  Google Scholar 

  59. W. Lee, H. Bang, H. Leeghim. Cooperative localization between small UAVs using a combination of heterogeneous sensors [J]. Aerosp. Sci. Technol., 2013, 27(1): 105–111.

    Article  Google Scholar 

  60. Y. Zeng, R. Zhang, J. L. Teng. Wireless communications with unmanned aerial vehicles: Opportunities and challenges [J]. IEEE Commun. Mag., 2016, 54(5): 36–42.

    Article  Google Scholar 

  61. Command and Control(c2) Data link Mini-mum operational performance standards (MOPS) (Terrestri-al), RTCA Std. DO-362, 2016.

  62. L. Gupta, R. Jain, G. Vaszkun. Survey of important issues in UAV communication networks [J]. IEEE Commun. Surv. Tutorials, 2016, 18(2): 1123–1152.

    Article  Google Scholar 

  63. D. W. Matolak. Air-ground channels & models: Comprehensive review and considerations for unmanned aircraft systems [C]//2012 IEEE Aerosp. Conf., Big Sky, 2012: 1–17.

    Google Scholar 

  64. D. W. Matolak, R. Sun. Air-ground channel characterization for unmanned aircraft systems—Part I: Methods, measurements, and models for over-water settings [J]. IEEE Trans. Veh. Technol., 2017, 66(1): 26–44.

    Article  Google Scholar 

  65. R. Sun, D. Matolak. Air-ground channel characterization for unmanned aircraft systems—Part II: Hilly & mountainous settings [J]. IEEE Trans. Veh. Technol., 2017, 66(3): 1913–1925.

    Article  Google Scholar 

  66. D. W. Matolak, R. Sun. Air-ground channel characterization for unmanned aircraft aystems—Part III: The suburban and near-rrban environments [J]. IEEE Trans. Veh. Technol., 2017, 66(8): 6607–6618.

    Article  Google Scholar 

  67. R. Sun, D. W. Matolak, W. Rayess. Air-ground channel characterization for unmanned aircraft systems—Part IV: Airframe shadowing [J]. IEEE Trans. Veh. Technol., 2017, 66(9): 7643–7652.

    Article  Google Scholar 

  68. J. H. Griner, R. J. Kerczewski. Communications for UAS integration in the NAS phase 2—Satellite communications and terrestrial extension [C]//2017 Integr. Commun. Navig. Surveill. Conf., Herndon, 2017: 4A4–1–4A4–8.

    Google Scholar 

  69. R. J. Kerczewski, J. D. Wilson, W. D. Bishop. Parameter impact on sharing studies between UAS CNPC satellite transmitters and terrestrial systems [C]//2015 Integr. Commun. Navig. Surveill. Conf., Herdon, 2015: X2–1–X2–11.

    Google Scholar 

  70. R. J. Kerczewski, J. D. Wilson, W. D. Bishop. UAS CNPC satellite link performance—Sharing spectrum with terrestrial systems [C]//2016 IEEE Aerosp. Conf., Big Sky, 2016: 1–9.

    Google Scholar 

  71. R. J. Kerczewski, J. H. Griner, W. D. Bishop, et al. Progress on the development of the UAS C2 link and supporting spectrum—from LOS to BLOS [C]//2017 IEEE Aerosp. Conf., Big Sky, 2017: 1–9.

    Google Scholar 

  72. D. C. Iannicca, D. P. Young, S. K. Thadhani, et al. Security risk assessment process for UAS in the NAS CNPC architecture [C]//2013 Integr. Commun. Navig. Surveill. Conf., Herndon, 2013: 1–9.

    Google Scholar 

  73. G. Wang, B.-S. Lee, J. Y. Ahn. Authentication and key management in an LTE-based unmanned aerial system control and non-payload communication network [C]//2016 IEEE 4th Int. Conf. Futur. Internet Things Cloud Work, Vienna, 2016: 355–360.

    Google Scholar 

  74. T. C. Hong, K. Kang, K. Lim, et al. Network architecture for control and non-payload communication of UAV [C]//Int. Conf. Inf. Commun. Technol. Converg., Jeju, 2016: 762–764.

    Google Scholar 

  75. X. Liu, Z. Wei, Z. Feng, et al. UD-MAC: Delay tolerant multiple access control protocol for unmanned aerial vehicle networks [C]//2017 IEEE 28th Annu. Int. Symp. Pers. Indoor, Mob. Radio Commun., Montreal, 2017: 1–6.

    Google Scholar 

  76. M. Bryson, S. Sukkarieh. Architectures for cooperative airborne simultaneous localisation and mapping [J]. J. Intell. Robot. Syst., 2009, 55(4-5): 267–297.

    Article  MATH  Google Scholar 

  77. S. Goel, A. Kealy, V. Gikas, et al. Cooperative localization of unmanned aerial vehicles using GNSS,MEMS Inertial and UWB sensors [J]. J. Surv. Eng., 2017, 143(4).

    Google Scholar 

  78. D. Alejo, J. A. Cobano, G. Heredia, et al. Collision-free 4D trajectory planning in unmanned aerial vehicles for assembly and structure construction [J]. J. Intell. Robot. Syst., 2014, 73(1-4): 783–795.

    Article  Google Scholar 

  79. Z. Jia, Z. Dong, Y. Liu. Mode design and control structure of manned/unmanned aerial vehicles cooperative engagement [C]//IEEE Int. Conf. Aircr. Util. Syst., 2016: 124–129.

    Google Scholar 

  80. A. S. Brand˜ao, M. Sarcinelli-Filho. On the guidance of multiple UAV using a centralized formation control scheme and delaunay triangulation [J]. J. Intell. Robot. Syst., 2016, 84(1-4): 397–413.

    Article  Google Scholar 

  81. D. Alejo, J. A. Cobano, G. Heredia, et al. A reactive method for collision avoidance in industrial environments [J]. J. Intell. Robot. Syst., 2016, 84(1-4): 745C758.

    Article  Google Scholar 

  82. X. Xiang, C. Liu, H. Su, et al. On decentralized adaptive full-order sliding mode control of multiple UAVs [J]. ISA Trans., 2017, 71: 196–205.

    Article  Google Scholar 

  83. A. Franchi, P. Stegagno, G. Oriolo. Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance [J]. Auton. Robots, 2015, 40(2): 1–21.

    Google Scholar 

  84. J.M. Daly, Y. Ma, S. L. Waslander. Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays [J]. Auton. Robots, 2014, 38(2): 179–191.

    Article  Google Scholar 

  85. H. Yu, K. Meier, M. Argyle, et al. Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles [J]. IEEE/ASME Trans. Mechatronics, 2014, 20(2): 541–552.

    Article  Google Scholar 

  86. M. Itkin, M. Kim, Y. Park. Development of cloud-based UAV monitoring and management system: [J]. Sensors, 2016, 16(11): 1913.

    Article  Google Scholar 

  87. S. Jeong, O. Simeone, J. Kang. Mobile cloud computing with a UAVmounted cloudlet: Optimal bit allocation for communication and computation [J]. IET Commun., 2017, 11(7): 969–974.

    Article  Google Scholar 

  88. D. Wu, D. I. Arkhipov, M. Kim, et al. ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing [J]. IEEE Trans. Comput., 2017, 66(2): 183–198.

    MathSciNet  MATH  Google Scholar 

  89. J. Chakareski. Aerial UAV-IoT sensing for ubiquitous immersive communication and virtual human teleportation [EB]. INFOCOM 2017, 2017.

    Google Scholar 

  90. C. Gao, Z. Zhen, H. Gong. A self-organized search and attack algorithm for multiple unmanned aerial vehicles [J]. Aerosp. Sci. Technol., 2016, 54: 229–240.

    Article  Google Scholar 

  91. W. Zhao, Q. Meng, P. W. Chung. A heuristic distributed task allocation method for multivehicle multitask problems and its application to search and rescue scenario [J]. IEEE Trans. Cybern., 2016, 46(4): 902–915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiang Xia.

Additional information

This work was supported by the National Key Laboratory of CNS/ATM, Beijing Key Laboratory for Network-based Cooperative Air Traffic Management and the State Key Program of National Natural Science of China (No. 71731001). The associate editor coordinating the review of this paper and approving it for publication was W. Zhang.

Xuejun Zhang is currently a professor in the School of Electronic and Information Engineering at Beihang University, where he received his B.S. and Ph.D. degrees in 1994 and 2000, respectively. His main research interests are air traffic management, data communication, and air surveillance.

Yanshaung Du was born in Hebei Province of China. She is now a Ph.D. student in the School of Electronic and Information Engineering at Beihang University. Her research interests include air traffic management, UAS traffic management, and sense and avoid technology.

Bo Gu was born in Inner Mongolia, China. He received the bachelor of engineering degree in optoelectronics information engineering from Beihang University, and the master’s degree in electronics and communication engineering from North China Electric Power University. He is now a Ph.D. candidate in information network engineering of Beihang University. His research interests include robustness analysis of complex networks and routing of UAVs communication.

Guoqiang Xu is a Ph.D. student in the School of Electronic and Information Engineering at Beihang University, where he received his B.S. degree in 2015. His areas of research include complex network theory and air transportation safety management.

Yongxiang Xia [corresponding author] is currently an associate professor in the College of Information Science and Electronic Engineering, Zhejiang University. He received his Ph.D. degree from Tsinghua University in 2004. His main research interests are network science and robustness analysis of power grid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Du, Y., Gu, B. et al. Survey of Safety Management Approaches to Unmanned Aerial Vehicles and Enabling Technologies. J. Commun. Inf. Netw. 3, 1–14 (2018). https://doi.org/10.1007/s41650-018-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41650-018-0038-x

Keywords

Navigation