[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Command Filter-Based Adaptive Fuzzy Fixed-Time Tracking Control for Stochastic Nonlinear Systems with Input Saturation and Dead Zone

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This thesis consider the tracking issue for a category of nonstrict-feedback stochastic nonlinear systems (NFSNSs) with input saturation (IS) and dead zone (DZ) in the presence of unmodeled dynamics and dynamic disturbances by designing an adaptive fuzzy fixed-time controller based on the fixed-time command filter (FTCF). The fuzzy logic systems (FLSs) and the dynamic signal are employed to solve the unknown nonlinear functions and unmodeled dynamics separately. A non-affine smooth function is employed to approximate the non-smooth IS and DZ nonlinearities and is transformed into an affine form on account of the mean-value theorem. At the same time, a FTCF is utilized to dispose of the “computational explosion” problem, and the compensation of the filtering error is considered. Compared to existing results, the bound and convergence time of the output of the FTCF are further provided. It is proved that all the closed-loop variables are fixed-time bounded in probability (FTBIP), and the designed control strategy has robustness to the unmodeled dynamics. Meanwhile, the tracking error converges to a small neighborhood of the origin. Two simulation examples exhibit the effectiveness and superiority of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  1. Farrell, J., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  Google Scholar 

  2. Dong, W., Farrell, J., Polycarpou, M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  Google Scholar 

  3. Song, S., Park, J., Zhang, B., Song, X., Zhang, Z.: Adaptive command filtered neuro-fuzzy control design for fractional-order nonlinear systems with unknown control directions and input quantization. IEEE Trans. Syst. Man Cybern.: Syst. 51(11), 7238–7249 (2021)

    Article  Google Scholar 

  4. Li, G., Yu, J., Chen, X.: Adaptive fuzzy neural network command filtered impedance control of constrained robotic manipulators with disturbance observer. IEEE Trans. Neural Netw. Learn. Syst. 34(8), 5171–5180 (2023)

    Article  MathSciNet  Google Scholar 

  5. Xu, Q., Zong, G., Chen, Y., Niu, B., Shi, K.: Command filter-based adaptive neural network controller design for uncertain nonsmooth nonlinear systems with output constraint. Int. J. Adapt. Control Signal Process. 37(2), 474–496 (2023)

    Article  MathSciNet  Google Scholar 

  6. Huang, S., Zong, G., Wang, H., Zhao, X., Alharbi, K.H.: Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying full-state constraints. Int. J. Fuzzy Syst. 25, 3144–3161 (2023)

    Article  Google Scholar 

  7. Zhang, X., Dong, H., Chen, F.: Command filtered adaptive backstepping fuzzy synchronization control of uncertain fractional order chaotic systems with external disturbance. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01692-5

    Article  Google Scholar 

  8. Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  9. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Zhang, Y., Yu, Y., Liu, H., Sun, C.: A zeno-free self-triggered approach to practical fixed-time consensus tracking with input delay. IEEE Trans. Syst. Man Cybern.: Syst. 52(5), 3126–3136 (2022)

    Article  Google Scholar 

  11. Cui, D., Ahn, C.K., Xiang, Z.: Fault-tolerant fuzzy observer-based fixed-time tracking control for nonlinear switched systems. IEEE Trans. Fuzzy Syst. 31(12), 4410–4420 (2023)

    Article  Google Scholar 

  12. Meng, Q., Ma, Q., Shi, Y.: Adaptive fixed-time stabilization for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 68(11), 6929–6936 (2023)

    Article  MathSciNet  Google Scholar 

  13. Song, X., Sun, P., Song, S., Wu, Q., Lu, J.: Event-triggered fuzzy adaptive fixed-time output-feedback control for nonlinear systems with multiple objective constraints. Int. J. Fuzzy Syst. 25, 275–288 (2023)

    Article  Google Scholar 

  14. Ai, Y., Feng, Z., Wang, H.: Fixed-time adaptive fuzzy anti-synchronization control of hyperchaotic rössler system based on backstepping method. Int. J. Fuzzy Syst. 25, 2501–2513 (2023)

    Article  Google Scholar 

  15. Jiang, Z., Praly, L.: Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica 34(7), 825–840 (1998)

    Article  MathSciNet  Google Scholar 

  16. Jiang, Z.: A combined backstepping and small-gain approach to adaptive output feedback control. Automatica 35(6), 1131–1139 (1999)

    Article  MathSciNet  Google Scholar 

  17. Sui, S., Chen, C.L.P., Tong, S.: Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 29(7), 1914–1926 (2021)

    Article  Google Scholar 

  18. Mohammadzadeh, A., Castillo, O., Band, S.S., Mosavi, A.: A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 23, 1633–1651 (2021)

    Article  Google Scholar 

  19. Wu, J., He, F., He, X., Li, J.: Dynamic event-triggered fuzzy adaptive control for non-strict-feedback stochastic nonlinear systems with injection and deception attacks. Int. J. Fuzzy Syst. 25, 1144–1155 (2023)

    Article  Google Scholar 

  20. Kang, S., Liu, P.X., Wang, H.: Fixed-time adaptive fuzzy command filtering control for a class of uncertain nonlinear systems with input saturation and dead zone. Nonlinear Dyn. 110(3), 2401–2414 (2022)

    Article  Google Scholar 

  21. Song, Z., Gao, L., Wang, Z., Li, P.: Adaptive neural control of constrained mimo nonlinear systems with asymmetric input saturation and dead zone. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3321596

    Article  Google Scholar 

  22. Wu, W., Tong, S.: Collision-free adaptive fuzzy formation control for unmanned surface vehicle systems with input saturation. Int. J. Fuzzy Syst. 25, 2139–2151 (2023)

    Article  Google Scholar 

  23. Zong, G., Xu, Q., Zhao, X., Su, S., Song, L.: Output-feedback adaptive neural network control for uncertain nonsmooth nonlinear systems with input deadzone and saturation. IEEE Trans. Cybern. 53(9), 5957–5969 (2023)

    Article  Google Scholar 

  24. Xu, H., Yu, D., Sui, S., Chen, C.L.P.: An event-triggered predefined time decentralized output feedback fuzzy adaptive control method for interconnected systems. IEEE Trans. Fuzzy Syst. 31(2), 631–644 (2023)

    Article  Google Scholar 

  25. Liu, S., Wang, H., Li, T., Xu, K.: Adaptive neural fixed-time control for uncertain nonlinear systems. IEEE Trans. Circuits Syst. II: Express Briefs 71(2), 637–641 (2024)

    Google Scholar 

  26. Xu, H., Yu, D., Liu, Y.: Observer-based fuzzy adaptive predefined time control for uncertain nonlinear systems with full-state error constraints. IEEE Trans. Fuzzy Syst. 32(3), 1370–1382 (2024)

    Article  Google Scholar 

  27. Xu, B., Li, Y., Ahn, C.K.: Small-gain approach to fuzzy adaptive control for interconnected systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 30(11), 4702–4716 (2022)

    Article  Google Scholar 

  28. Zhu, H., Li, Y., Tong, S.: Dynamic event-triggered reinforcement learning control of stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 31(9), 2917–2928 (2023)

    Article  Google Scholar 

  29. Wang, F., You, Z., Liu, Z., Chen, C.L.P.: A fast finite-time neural network control of stochastic nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7443–7452 (2023)

    Article  MathSciNet  Google Scholar 

  30. Yuan, X., Yang, B., Pan, X., Zhao, X.: Fuzzy control of nonlinear strict-feedback systems with full-state constraints: a new barrier function approach. IEEE Trans. Fuzzy Syst. 30(12), 5419–5430 (2022)

    Article  Google Scholar 

  31. Wang, W., Li, Y.: Distributed fuzzy optimal consensus control of state-constrained nonlinear strict-feedback systems. IEEE Trans. Cybern. 53(5), 2914–2929 (2023)

    Article  Google Scholar 

  32. Sun, Y., Chen, M., Peng, K., Wu, L., Liu, C.: Fuzzy observer-based finite-time command filtered tracking control for uncertain strict-feedback nonlinear systems with sensor faults. Int. J. Fuzzy Syst. 26(2), 659–673 (2024)

    Article  Google Scholar 

  33. Zuo, R., Lv, M., Li, Y., Nie, H.: Neural-network-based adaptive tracking control for nonlinear pure-feedback systems subject to periodic disturbance. Int. J. Control 95(9), 2554–2564 (2022)

    Article  MathSciNet  Google Scholar 

  34. Guo, C., Hu, J., Wu, Y., Čelikovský, S.: Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. IEEE Trans. Circuits Syst. I: Regul. Pap. 70(9), 3746–3758 (2023)

    Article  Google Scholar 

  35. Wang, N., Fan, P., Li, M., Tao, F., Fu, Z.: Fixed time adaptive fuzzy dynamic surface control for pure feedback stochastic nonlinear systems. Int. J. Fuzzy Syst. 25(7), 2748–2759 (2023)

    Article  Google Scholar 

  36. Wang, H., Bai, W., Zhao, X., Liu, P.X.: Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults. IEEE Trans. Cybern. 52(7), 6959–6971 (2022)

    Article  Google Scholar 

  37. Ji, H., Xi, H.: Adaptive output-feedback tracking of stochastic nonlinear systems. IEEE Trans. Autom. Control 51(2), 355–360 (2006)

    Article  MathSciNet  Google Scholar 

  38. Wu, J., He, F., Shen, H., Ding, S., Wu, Z.: Adaptive NN fixed-time fault-tolerant control for uncertain stochastic system with deferred output constraint via self-triggered mechanism. IEEE Trans. Cybern. 53(9), 5892–5903 (2023)

    Article  Google Scholar 

  39. Cui, D., Xiang, Z.: Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 31(1), 174–183 (2023)

    Article  MathSciNet  Google Scholar 

  40. Liang, Y., Li, Y., Hou, Z.: Adaptive fixed-time tracking control for stochastic pure-feedback nonlinear systems. Int. J. Adapt. Control Signal Process. 35(9), 1712–1731 (2021)

    Article  MathSciNet  Google Scholar 

  41. Ren, L., Wu, J., Liu, J.: Dynamic event-triggered adaptive fixed-time fuzzy tracking control for stochastic nonlinear systems under asymmetric time-varying state constraints. Int. J. Fuzzy Syst. 26(1), 73–86 (2024)

    Article  Google Scholar 

  42. Su, H., Zhang, W.: Adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear systems with actuator faults. IEEE Trans. Syst. Man Cybern.: Syst. 50(9), 3456–3469 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62173046, in part by the Natural Science Foundation of Liaoning Province under Grant 2024-MS-185, and in part by the Major Project of Education Department in Liaoning Province under Grant LJ212410167075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanqing Wang.

Ethics declarations

Conffict of interest

The authors declare that they have no conffict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ai, Z. Command Filter-Based Adaptive Fuzzy Fixed-Time Tracking Control for Stochastic Nonlinear Systems with Input Saturation and Dead Zone. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01854-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01854-5

Keywords

Navigation