Abstract
Intelligent control using interval type-2 fuzzy systems and cerebellar model articulation networks (CMAN) have been extensively studied. Although they perform well with nonlinear problems, they often have two significant issues: the choice of the learning rate and the design of adaptive laws to update the network parameters. To address these drawbacks, we proposed an improved gray wolf optimizer (IGWO) that optimizes the learning rate of type-2 fuzzy CMAN. We also designed an adaptation law to adjust the proposed network parameters online. Additionally, a three-dimensional Gaussian membership function (3DGMF) was developed to handle external disturbances and system uncertainties. Finally, numerical simulation results on micro-electro-mechanical system (MEMS) motion control were provided to validate the effectiveness of the proposed control method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Haghiabi, A.H., Parsaie, A., Ememgholizadeh, S.: Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alex. Eng. J. 57(3), 1773–1782 (2018)
Bukhari, A.H., Sulaiman, M., Islam, S., Shoaib, M., Kumam, P., Raja, M.A.Z.: Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alex. Eng. J. 59(1), 101–116 (2020)
Sheng, L., Xiaojie, G., Lanyong, Z.: Robust adaptive backstepping sliding mode control for six-phase permanent magnet synchronous motor using recurrent wavelet fuzzy neural network. IEEE Access 5, 14502–14515 (2017)
Al-Qaness, M.A., Abd Elaziz, M., Ewees, A.A.: Oil consumption forecasting using optimized adaptive neuro-fuzzy inference system based on sine cosine algorithm. IEEE Access 6, 68394–68402 (2018)
Xiao, J., Cheng, J., Shi, K., Zhang, R.: A general approach to fixed-time synchronization problem for fractional-order multi-dimension-valued fuzzy neural networks based on memristor. IEEE Trans. Fuzzy Syst. 30(4), 968–977 (2021)
Zhang, C., Oh, S.-K., Fu, Z.: Design of stabilized polynomial-based ensemble fuzzy neural networks based on heterogeneous neurons and synergy of multiple techniques. Inf. Sci. 542, 425–452 (2021)
Fei, J., Chen, Y.: Fuzzy double hidden layer recurrent neural terminal sliding mode control of single-phase active power filter. IEEE Trans. Fuzzy Syst. 29(10), 3067–3081 (2021)
Chen, S.-B., et al.: Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alex. Eng. J. 60(1), 1545–1555 (2021)
El-Nagar, A.M., El-Bardini, M., El-Rabaie, N.M.: Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. Alex. Eng. J. 53(1), 23–32 (2014)
Tavoosi, J., Suratgar, A.A., Menhaj, M.B.: Stability analysis of a class of MIMO recurrent type-2 fuzzy systems. Int. J. Fuzzy Syst. 19(3), 895–908 (2017)
Bernal, E., Lagunes, M.L., Castillo, O., Soria, J., Valdez, F.: Optimization of type-2 fuzzy logic controller design using the GSO and FA algorithms. Int. J. Fuzzy Syst. 23(1), 42–57 (2021)
Carvajal, O., Melin, P., Miramontes, I., Prado-Arechiga, G.: Optimal design of a general type-2 fuzzy classifier for the pulse level and its hardware implementation. Eng. Appl. Artif. Intell. 97, 104069 (2021)
Karagöz, S., Deveci, M., Simic, V., Aydin, N.: Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl. Soft Comput. 102, 107107 (2021)
Chaoui, H., Khayamy, M., Aljarboua, A.A.: Adaptive interval type-2 fuzzy logic control for PMSM drives with a modified reference frame. IEEE Trans. Ind. Electron. 64(5), 3786–3797 (2017)
Wan, S.-P., Chen, Z.-H., Dong, J.-Y.: An integrated interval type-2 fuzzy technique for democratic–autocratic multi-criteria decision making. Knowl. Based Syst. 214, 106735 (2021)
Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)
Jiang, J.-A., Syue, C.-H., Wang, C.-H., Wang, J.-C., Shieh, J.-S.: An interval type-2 fuzzy logic system for stock index forecasting based on fuzzy time series and a fuzzy logical relationship map. IEEE Access 6, 69107–69119 (2018)
Li, H., Wang, J., Wu, L., Lam, H.-K., Gao, Y.: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018)
Le, T.-L.: Fuzzy C-Means clustering interval type-2 cerebellar model articulation neural network for medical data classification. IEEE Access 7, 20967–20973 (2019)
Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)
Le, T.-L., Quynh, N.V., Long, N.K., Hong, S.K.: Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using Jaya algorithm. IEEE Access 8, 181246–181257 (2020)
Pandu, S.B., et al.: Power quality enhancement in sensitive local distribution grid using interval type-II fuzzy logic controlled DSTATCOM. IEEE Access 9, 59888–59899 (2021)
Albus, J.S.: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control 97(3), 220–227 (1975)
Hwang, M., Chen, Y.-J., Ju, M.-Y., Jiang, W.-C.: A fuzzy CMAC learning approach to image based visual servoing system. Inf. Sci. 576, 187–203 (2021)
Lee, C.H., Chang, F.Y., Lin, C.M.: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization. IEEE Trans. Cybern. 44(3), 329–341 (2014)
Lin, C.-M., Yang, M.-S., Chao, F., Hu, X.-M., Zhang, J.: Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans. Neural Netw. Learn. Syst. 27(10), 2084–2094 (2016)
Chang, C.-W., Xiao, W.-R., Hsiao, C.-C., Chen, S.-S., Tao, C.-W.: A simplified interval type-2 fuzzy CMAC. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017, pp. 1–4. IEEE (2017)
Wang, J.-G., Tai, S.-C., Lin, C.-J.: The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images. Neural Comput. Appl. 29(6), 201–213 (2018)
Le, T.-L., Huynh, T.-T., Hong, S.-K.: Self-organizing interval type-2 fuzzy asymmetric CMAC design to synchronize chaotic satellite systems using a modified grey wolf optimizer. IEEE Access 8, 53697–53709 (2020)
Lin, C.-M., Yang, M.-S.: Type-2 fuzzy cerebellar model articulation control system design for MIMO uncertain nonlinear systems. Int. J. Mach. Learn. Cybern. 11(2), 269–286 (2020)
Chao, F., Zhou, D., Lin, C.-M., Zhou, C., Shi, M., Lin, D.: Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm. Soft Comput. 22(10), 3141–3153 (2018)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Li, Y., Lin, X., Liu, J.: An improved gray wolf optimization algorithm to solve engineering problems. Sustainability 13(6), 3208 (2021)
Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018)
Li, L., Sun, L., Kang, W., Guo, J., Han, C., Li, S.: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation. IEEE Access 4, 6438–6450 (2016)
Qais, M.H., Hasanien, H.M., Alghuwainem, S.: A grey wolf optimizer for optimum parameters of multiple PI controllers of a grid-connected PMSG driven by variable speed wind turbine. IEEE Access 6, 44120–44128 (2018)
Goudos, S.K., Yioultsis, T.V., Boursianis, A.D., Psannis, K.E., Siakavara, K.: Application of new hybrid Jaya grey wolf optimizer to antenna design for 5G communications systems. IEEE Access 7, 71061–71071 (2019)
Khanum, R.A., Jan, M.A., Aldegheishem, A., Mehmood, A., Alrajeh, N., Khanan, A.: Two new improved variants of grey wolf optimizer for unconstrained optimization. IEEE Access 8, 30805–30825 (2019)
Gupta, S., Deep, K.: A memory-based Grey Wolf Optimizer for global optimization tasks. Appl. Soft Comput. 93, 106367 (2020)
Rahmani, M., Rahman, M.H., Nosonovsky, M.: A new hybrid robust control of MEMS gyroscope. Microsyst. Technol. 26(3), 853–860 (2020)
Rahmani, M., Komijani, H., Ghanbari, A., Ettefagh, M.M.: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst. Technol. 24(6), 2835–2846 (2018)
Si, H., Shao, X., Zhang, W.: MLP-based neural guaranteed performance control for MEMS gyroscope with logarithmic quantizer. IEEE Access 8, 38596–38605 (2020)
Rahmani, M., Rahman, M.H.: A new adaptive fractional sliding mode control of a MEMS gyroscope. Microsyst. Technol. 25(9), 3409–3416 (2019)
Chu, Y., Fei, J., Hou, S.: Adaptive neural backstepping PID global sliding mode fuzzy control of MEMS gyroscope. IEEE Access 7, 37918–37926 (2019)
Shao, X., Si, H., Zhang, W.: Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization. Fuzzy Sets Syst. 411, 136–154 (2021)
Rahmani, M.: MEMS gyroscope control using a novel compound robust control. ISA Trans. 72, 37–43 (2018)
Fei, J., Batur, C.: A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Trans. 48(1), 73–78 (2009)
Wang, S., Fei, J.: Robust adaptive sliding mode control of MEMS gyroscope using T-S fuzzy model. Nonlinear Dyn. 77(1), 361–371 (2014)
Wang, Z., Fei, J.: Fractional-Order terminal sliding mode control using self-evolving recurrent Chebyshev fuzzy neural network for MEMS gyroscope. IEEE Trans. Fuzzy Syst. 30(7), 2747–2758 (2021)
Acknowledgements
This research was supported by the Lac Hong University, Bien Hoa, Vietnam.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Author declares that there is no conflict of interest or financial ties to disclose.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Le, TL. Design of Intelligent Controller Using Type-2 Fuzzy Cerebellar Model Articulation and 3D Membership Functions. Int. J. Fuzzy Syst. 25, 966–979 (2023). https://doi.org/10.1007/s40815-022-01419-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-022-01419-4