[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Design of Intelligent Controller Using Type-2 Fuzzy Cerebellar Model Articulation and 3D Membership Functions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Intelligent control using interval type-2 fuzzy systems and cerebellar model articulation networks (CMAN) have been extensively studied. Although they perform well with nonlinear problems, they often have two significant issues: the choice of the learning rate and the design of adaptive laws to update the network parameters. To address these drawbacks, we proposed an improved gray wolf optimizer (IGWO) that optimizes the learning rate of type-2 fuzzy CMAN. We also designed an adaptation law to adjust the proposed network parameters online. Additionally, a three-dimensional Gaussian membership function (3DGMF) was developed to handle external disturbances and system uncertainties. Finally, numerical simulation results on micro-electro-mechanical system (MEMS) motion control were provided to validate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Haghiabi, A.H., Parsaie, A., Ememgholizadeh, S.: Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alex. Eng. J. 57(3), 1773–1782 (2018)

    Google Scholar 

  2. Bukhari, A.H., Sulaiman, M., Islam, S., Shoaib, M., Kumam, P., Raja, M.A.Z.: Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations. Alex. Eng. J. 59(1), 101–116 (2020)

    Google Scholar 

  3. Sheng, L., Xiaojie, G., Lanyong, Z.: Robust adaptive backstepping sliding mode control for six-phase permanent magnet synchronous motor using recurrent wavelet fuzzy neural network. IEEE Access 5, 14502–14515 (2017)

    Google Scholar 

  4. Al-Qaness, M.A., Abd Elaziz, M., Ewees, A.A.: Oil consumption forecasting using optimized adaptive neuro-fuzzy inference system based on sine cosine algorithm. IEEE Access 6, 68394–68402 (2018)

    Google Scholar 

  5. Xiao, J., Cheng, J., Shi, K., Zhang, R.: A general approach to fixed-time synchronization problem for fractional-order multi-dimension-valued fuzzy neural networks based on memristor. IEEE Trans. Fuzzy Syst. 30(4), 968–977 (2021)

    Google Scholar 

  6. Zhang, C., Oh, S.-K., Fu, Z.: Design of stabilized polynomial-based ensemble fuzzy neural networks based on heterogeneous neurons and synergy of multiple techniques. Inf. Sci. 542, 425–452 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Fei, J., Chen, Y.: Fuzzy double hidden layer recurrent neural terminal sliding mode control of single-phase active power filter. IEEE Trans. Fuzzy Syst. 29(10), 3067–3081 (2021)

    Google Scholar 

  8. Chen, S.-B., et al.: Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alex. Eng. J. 60(1), 1545–1555 (2021)

    Google Scholar 

  9. El-Nagar, A.M., El-Bardini, M., El-Rabaie, N.M.: Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. Alex. Eng. J. 53(1), 23–32 (2014)

    Google Scholar 

  10. Tavoosi, J., Suratgar, A.A., Menhaj, M.B.: Stability analysis of a class of MIMO recurrent type-2 fuzzy systems. Int. J. Fuzzy Syst. 19(3), 895–908 (2017)

    MathSciNet  Google Scholar 

  11. Bernal, E., Lagunes, M.L., Castillo, O., Soria, J., Valdez, F.: Optimization of type-2 fuzzy logic controller design using the GSO and FA algorithms. Int. J. Fuzzy Syst. 23(1), 42–57 (2021)

    Google Scholar 

  12. Carvajal, O., Melin, P., Miramontes, I., Prado-Arechiga, G.: Optimal design of a general type-2 fuzzy classifier for the pulse level and its hardware implementation. Eng. Appl. Artif. Intell. 97, 104069 (2021)

    Google Scholar 

  13. Karagöz, S., Deveci, M., Simic, V., Aydin, N.: Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl. Soft Comput. 102, 107107 (2021)

    Google Scholar 

  14. Chaoui, H., Khayamy, M., Aljarboua, A.A.: Adaptive interval type-2 fuzzy logic control for PMSM drives with a modified reference frame. IEEE Trans. Ind. Electron. 64(5), 3786–3797 (2017)

    Google Scholar 

  15. Wan, S.-P., Chen, Z.-H., Dong, J.-Y.: An integrated interval type-2 fuzzy technique for democratic–autocratic multi-criteria decision making. Knowl. Based Syst. 214, 106735 (2021)

    Google Scholar 

  16. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Google Scholar 

  17. Jiang, J.-A., Syue, C.-H., Wang, C.-H., Wang, J.-C., Shieh, J.-S.: An interval type-2 fuzzy logic system for stock index forecasting based on fuzzy time series and a fuzzy logical relationship map. IEEE Access 6, 69107–69119 (2018)

    Google Scholar 

  18. Li, H., Wang, J., Wu, L., Lam, H.-K., Gao, Y.: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018)

    Google Scholar 

  19. Le, T.-L.: Fuzzy C-Means clustering interval type-2 cerebellar model articulation neural network for medical data classification. IEEE Access 7, 20967–20973 (2019)

    Google Scholar 

  20. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Google Scholar 

  21. Le, T.-L., Quynh, N.V., Long, N.K., Hong, S.K.: Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using Jaya algorithm. IEEE Access 8, 181246–181257 (2020)

    Google Scholar 

  22. Pandu, S.B., et al.: Power quality enhancement in sensitive local distribution grid using interval type-II fuzzy logic controlled DSTATCOM. IEEE Access 9, 59888–59899 (2021)

    Google Scholar 

  23. Albus, J.S.: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control 97(3), 220–227 (1975)

    MATH  Google Scholar 

  24. Hwang, M., Chen, Y.-J., Ju, M.-Y., Jiang, W.-C.: A fuzzy CMAC learning approach to image based visual servoing system. Inf. Sci. 576, 187–203 (2021)

    MathSciNet  Google Scholar 

  25. Lee, C.H., Chang, F.Y., Lin, C.M.: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization. IEEE Trans. Cybern. 44(3), 329–341 (2014)

    Google Scholar 

  26. Lin, C.-M., Yang, M.-S., Chao, F., Hu, X.-M., Zhang, J.: Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans. Neural Netw. Learn. Syst. 27(10), 2084–2094 (2016)

    MathSciNet  Google Scholar 

  27. Chang, C.-W., Xiao, W.-R., Hsiao, C.-C., Chen, S.-S., Tao, C.-W.: A simplified interval type-2 fuzzy CMAC. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017, pp. 1–4. IEEE (2017)

  28. Wang, J.-G., Tai, S.-C., Lin, C.-J.: The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images. Neural Comput. Appl. 29(6), 201–213 (2018)

    Google Scholar 

  29. Le, T.-L., Huynh, T.-T., Hong, S.-K.: Self-organizing interval type-2 fuzzy asymmetric CMAC design to synchronize chaotic satellite systems using a modified grey wolf optimizer. IEEE Access 8, 53697–53709 (2020)

    Google Scholar 

  30. Lin, C.-M., Yang, M.-S.: Type-2 fuzzy cerebellar model articulation control system design for MIMO uncertain nonlinear systems. Int. J. Mach. Learn. Cybern. 11(2), 269–286 (2020)

    Google Scholar 

  31. Chao, F., Zhou, D., Lin, C.-M., Zhou, C., Shi, M., Lin, D.: Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm. Soft Comput. 22(10), 3141–3153 (2018)

    Google Scholar 

  32. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  33. Li, Y., Lin, X., Liu, J.: An improved gray wolf optimization algorithm to solve engineering problems. Sustainability 13(6), 3208 (2021)

    Google Scholar 

  34. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018)

    Google Scholar 

  35. Li, L., Sun, L., Kang, W., Guo, J., Han, C., Li, S.: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation. IEEE Access 4, 6438–6450 (2016)

    Google Scholar 

  36. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: A grey wolf optimizer for optimum parameters of multiple PI controllers of a grid-connected PMSG driven by variable speed wind turbine. IEEE Access 6, 44120–44128 (2018)

    Google Scholar 

  37. Goudos, S.K., Yioultsis, T.V., Boursianis, A.D., Psannis, K.E., Siakavara, K.: Application of new hybrid Jaya grey wolf optimizer to antenna design for 5G communications systems. IEEE Access 7, 71061–71071 (2019)

    Google Scholar 

  38. Khanum, R.A., Jan, M.A., Aldegheishem, A., Mehmood, A., Alrajeh, N., Khanan, A.: Two new improved variants of grey wolf optimizer for unconstrained optimization. IEEE Access 8, 30805–30825 (2019)

    Google Scholar 

  39. Gupta, S., Deep, K.: A memory-based Grey Wolf Optimizer for global optimization tasks. Appl. Soft Comput. 93, 106367 (2020)

    Google Scholar 

  40. Rahmani, M., Rahman, M.H., Nosonovsky, M.: A new hybrid robust control of MEMS gyroscope. Microsyst. Technol. 26(3), 853–860 (2020)

    Google Scholar 

  41. Rahmani, M., Komijani, H., Ghanbari, A., Ettefagh, M.M.: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst. Technol. 24(6), 2835–2846 (2018)

    Google Scholar 

  42. Si, H., Shao, X., Zhang, W.: MLP-based neural guaranteed performance control for MEMS gyroscope with logarithmic quantizer. IEEE Access 8, 38596–38605 (2020)

    Google Scholar 

  43. Rahmani, M., Rahman, M.H.: A new adaptive fractional sliding mode control of a MEMS gyroscope. Microsyst. Technol. 25(9), 3409–3416 (2019)

    Google Scholar 

  44. Chu, Y., Fei, J., Hou, S.: Adaptive neural backstepping PID global sliding mode fuzzy control of MEMS gyroscope. IEEE Access 7, 37918–37926 (2019)

    Google Scholar 

  45. Shao, X., Si, H., Zhang, W.: Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization. Fuzzy Sets Syst. 411, 136–154 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Rahmani, M.: MEMS gyroscope control using a novel compound robust control. ISA Trans. 72, 37–43 (2018)

    Google Scholar 

  47. Fei, J., Batur, C.: A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Trans. 48(1), 73–78 (2009)

    Google Scholar 

  48. Wang, S., Fei, J.: Robust adaptive sliding mode control of MEMS gyroscope using T-S fuzzy model. Nonlinear Dyn. 77(1), 361–371 (2014)

    MathSciNet  Google Scholar 

  49. Wang, Z., Fei, J.: Fractional-Order terminal sliding mode control using self-evolving recurrent Chebyshev fuzzy neural network for MEMS gyroscope. IEEE Trans. Fuzzy Syst. 30(7), 2747–2758 (2021)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Lac Hong University, Bien Hoa, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Loc Le.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of interest or financial ties to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, TL. Design of Intelligent Controller Using Type-2 Fuzzy Cerebellar Model Articulation and 3D Membership Functions. Int. J. Fuzzy Syst. 25, 966–979 (2023). https://doi.org/10.1007/s40815-022-01419-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01419-4

Keywords

Navigation