Abstract
In this paper, let \(\alpha +u\beta \) be a unit in \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0),\) where p is an odd prime, m is a positive integer and \(\beta \ne 0\). With the help of decomposition of the binomial \(x^{8}- \alpha _0\) into a product of irreducible coprime polynomials and the ring \(\frac{({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m})[x]}{\left\langle x^{8p^s}-(\alpha +u\beta )\right\rangle }\) is a principal ideal ring, we give the complete description of all \((\alpha +u\beta )\)-constacyclic codes of length \(8p^s\) over the finite commutative chain ring \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0)\) in terms of their generator polynomials, where \(\alpha _{0}^{p^{s}}=\alpha \). We also find out the number of codewords in each of these constacyclic codes. Besides illustrating our results with examples, we determine duals of constacyclic codes, and as an application, we determine the self-dual, self-orthogonal, dual-containing, and linear complimentary-dual \((\alpha +u\beta )\)-constacyclic codes of length \(8p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0)\). Also, we determine the RT (Rosenbloom–Tsfasman) distances, RT weight distributions, and Hamming distances of such constacyclic codes.
Similar content being viewed by others
References
Bachoc C (1997) Application of coding theory to the construction of modular lattices. J Combin Theory Ser A 78:92–119
Berlekamp ER (1968) Algebraic coding theory. McGraw-Hill Book Company, New York
Blahut RE (2003) Algebraic codes for data transmission. Cambridge University Press, Cambridge
Bonnecaze A, Rains E (2000) Solé P (2000) \(3\)-colored \(5\)- designs and \({\mathbb{Z}}_{4}\)-codes. J Stat Plann Inference 86(2):349–368 (Special issue in honor of Pro- fessor Ralph Stanton. MR 1768278 (2001g:05021))
Bonnecaze A, Udaya P (1999) Cyclic codes and self-dual codes over \({\mathbb{F}}_{2} + u{\mathbb{F}}_{2}\). IEEE Trans Inf Theory 45(4):1250–1255
Burton DM (1980) Elementary number theory. McGraw-Hill Book Company, New York
Cao Y, Cao Y, Gao J, Fu F (2018) Constacyclic codes of length \(p^sn\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Adv Math Commun 12(2):231–262
Chen B, Dinh HQ, Liu H, Wang L (2016) Constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 37:108–130
Convay JH, Sloane NJA (1993) Self-dual codes over the integers modulo 4. J Combin Theory Ser A 62(1):30–45
Daraiseh AGA, Baum CW (1998) Decoder error and failure probablities for Reed-Solomon codes: decodable vectors method. IEEE Trans Commun 46(7):857–859
Dinh Hai Q, Nguyen BT, Songsak Sriboonchitta, Vo Thang M (2019) On \((\alpha +u\beta )\)-constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m} + u{\mathbb{F}}_{p^m}\). J Algebra Appl 18:2. https://doi.org/10.1142/S0219498819500233
Dinh HQ (2005) Negacyclic codes of length \(2^s\) over Galois ring. IEEE Trans Inform Theory 51(12):4252–4262
Dinh HQ (2009) Constacyclic codes of length \(2^s\) over Galois extension ring of \({\mathbb{F}}_2+u{\mathbb{F}}_2\). IEEE Trans Inform Theory 55(4):1730–1740
Dinh HQ (2010) Constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). J Algebra 324(5):940–950
Dinh HQ (2013) On repeated-root constacyclic codes of length \(4p^s\). Asian Eur J Math 6:2. https://doi.org/10.1142/S1793557113500204
Dinh H, Lopez-Permouth SR (2004) Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory 50(8):1728–1744
Dinh HQ, Wang L, Zhu S (2015) Negacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 31:178–201
Dinh HQ, Dhompongsa S, Sriboonchitta S (2017) On constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m} + u{\mathbb{F}}_{p^m}\). Discret Math 340:832–849
Dinh HQ, Fan Y, Liu H, Liu X, Sriboonchitta S (2018) On self-dual constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Discret Math 341:324–335
Dinh HQ, Nguyen BT, Maneejuk P (2020) Constacyclic codes of length \(8p^s\) over over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Adv Math Commun 56(6):1385–1422
Dougherty ST, Skriganov MM (2002) MacWilliams duality and the rosenbloom—-Tsfasman metric. Moscow Math J 2(1):83–99
Hammons AR Jr, Kumar PV, Calderbank AR, Sloane NJA, Sole P (1994) The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans Inform Theory 40(2):301–319
Klin-Eam C, Phuto J (2019) Negacyclic codes of length \(8p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Bull Korean Math Soc 56(6):1385–1422
Liu X, Xu X (2014) Cyclic and negacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Acta Math Sci 34B(3):829–839
Morelos-Zaragoza RH (2006) The art of error correcting coding. Wiley, New York
Norton G, Sălăgean-Mandache A (2000) On the structure of linear cyclic codes over finite chain rings. Appl Algebra Eng Commun Comput 10(6):489–506
Ozen M, Siap I (2004) On the structure and decoding of linear codes with respect to the Rosenbloom–Tsfasman metric. SelÁuk J Appl Math 5(2):25–31
Pless V, Qian Z (1996) Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans Inform Theory 42(5):1594–1600
Pless V, Sole P, Qian Z (1997) Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl 3(1):48–69
Prange E (1957) Cyclic error-correcting codes in two symbols. Air Force Cambridge Research Labs, Bedford (TN-57-103)
Rani S (2016) Constacyclic codes, PhD Thesis, IIT Delhi. http://www.eprint.iitd.ac.in/bitstream/2074/7199/1/TH-5125.pdf
Rani S (2020) On cyclic and negacyclic Codes of length \(8p^s\) Over \({\mathbb{F}}_{p^m} + uF_{p^m}\). J Indian Math Soc 87(3–4):231–260
Siap I, Ozen M (2004) The complete weight enumerator for codes over \(M_{n\times s}(R)\). Appl Math Lett 17:65–69
Skriganov MM (2001) Coding theory and uniform distributions. Algebra Anal 13(2):191–239
Udaya P, Bonnecaze A (1999) Decoding of cyclic codes over \({\mathbb{F}}_{2} +u{\mathbb{F}}_{2}\). IEEE Trans Inf Theory 45(6):2148–2157
Wan Z (1997) Quaternary codes. World Scientific, Singapore
Wolf JK, Michelson AM, Levesque AH (1982) On the probability of undetected errors for linear block codes. IEEE Trans Commun 30(2):317–324
Yu Rosenbloom M, Tsfasman MA (1997) Codes for the m-metric. Probl Inf Transm 33(1):45–52
Zhao W, Tang X, Gu Z (2018) All \((\alpha +u\beta )\)-constacyclic codes of length \(np^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 50:1–16
Acknowledgements
The authors are greatful to Dr. Abhishake Rastogi for his useful suggestions and ideas which helped the authors to drive and improve the results. The authors would like to sincerely thank the referees for a very meticulous reading of this manuscript, and for valuable suggestions which helped to create an improved final version. The work of H.Q. Dinh is supported in part by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University. The work of Saroj Rani is supported by the Department of Science and Technology (DST), India under the Grant No. MTR/2018/001250.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Thomas Aaron Gulliver.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rani, S., Dinh, H.Q. RT distances and Hamming distances of constacyclic codes of length \(8p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\). Comp. Appl. Math. 41, 159 (2022). https://doi.org/10.1007/s40314-022-01867-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40314-022-01867-6
Keywords
- Constacyclic codes
- Dual codes
- Self-orthogonal codes
- Self-dual codes
- Dual-containing codes
- RT distance
- Hamming distance