[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

RT distances and Hamming distances of constacyclic codes of length \(8p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\)

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, let \(\alpha +u\beta \) be a unit in \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0),\) where p is an odd prime, m is a positive integer and \(\beta \ne 0\). With the help of decomposition of the binomial \(x^{8}- \alpha _0\) into a product of irreducible coprime polynomials and the ring \(\frac{({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m})[x]}{\left\langle x^{8p^s}-(\alpha +u\beta )\right\rangle }\) is a principal ideal ring, we give the complete description of all \((\alpha +u\beta )\)-constacyclic codes of length \(8p^s\) over the finite commutative chain ring \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0)\) in terms of their generator polynomials, where \(\alpha _{0}^{p^{s}}=\alpha \). We also find out the number of codewords in each of these constacyclic codes. Besides illustrating our results with examples, we determine duals of constacyclic codes, and as an application, we determine the self-dual, self-orthogonal, dual-containing, and linear complimentary-dual \((\alpha +u\beta )\)-constacyclic codes of length \(8p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) \((u^2=0)\). Also, we determine the RT (Rosenbloom–Tsfasman) distances, RT weight distributions, and Hamming distances of such constacyclic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachoc C (1997) Application of coding theory to the construction of modular lattices. J Combin Theory Ser A 78:92–119

    Article  MathSciNet  Google Scholar 

  • Berlekamp ER (1968) Algebraic coding theory. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Blahut RE (2003) Algebraic codes for data transmission. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bonnecaze A, Rains E (2000) Solé P (2000) \(3\)-colored \(5\)- designs and \({\mathbb{Z}}_{4}\)-codes. J Stat Plann Inference 86(2):349–368 (Special issue in honor of Pro- fessor Ralph Stanton. MR 1768278 (2001g:05021))

    Article  Google Scholar 

  • Bonnecaze A, Udaya P (1999) Cyclic codes and self-dual codes over \({\mathbb{F}}_{2} + u{\mathbb{F}}_{2}\). IEEE Trans Inf Theory 45(4):1250–1255

    Article  Google Scholar 

  • Burton DM (1980) Elementary number theory. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Cao Y, Cao Y, Gao J, Fu F (2018) Constacyclic codes of length \(p^sn\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Adv Math Commun 12(2):231–262

    Article  MathSciNet  Google Scholar 

  • Chen B, Dinh HQ, Liu H, Wang L (2016) Constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 37:108–130

    Article  MathSciNet  Google Scholar 

  • Convay JH, Sloane NJA (1993) Self-dual codes over the integers modulo 4. J Combin Theory Ser A 62(1):30–45

    Article  MathSciNet  Google Scholar 

  • Daraiseh AGA, Baum CW (1998) Decoder error and failure probablities for Reed-Solomon codes: decodable vectors method. IEEE Trans Commun 46(7):857–859

    Article  Google Scholar 

  • Dinh Hai Q, Nguyen BT, Songsak Sriboonchitta, Vo Thang M (2019) On \((\alpha +u\beta )\)-constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m} + u{\mathbb{F}}_{p^m}\). J Algebra Appl 18:2. https://doi.org/10.1142/S0219498819500233

    Article  Google Scholar 

  • Dinh HQ (2005) Negacyclic codes of length \(2^s\) over Galois ring. IEEE Trans Inform Theory 51(12):4252–4262

    Article  MathSciNet  Google Scholar 

  • Dinh HQ (2009) Constacyclic codes of length \(2^s\) over Galois extension ring of \({\mathbb{F}}_2+u{\mathbb{F}}_2\). IEEE Trans Inform Theory 55(4):1730–1740

    Article  MathSciNet  Google Scholar 

  • Dinh HQ (2010) Constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). J Algebra 324(5):940–950

    Article  MathSciNet  Google Scholar 

  • Dinh HQ (2013) On repeated-root constacyclic codes of length \(4p^s\). Asian Eur J Math 6:2. https://doi.org/10.1142/S1793557113500204

    Article  Google Scholar 

  • Dinh H, Lopez-Permouth SR (2004) Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory 50(8):1728–1744

    Article  MathSciNet  Google Scholar 

  • Dinh HQ, Wang L, Zhu S (2015) Negacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 31:178–201

    Article  MathSciNet  Google Scholar 

  • Dinh HQ, Dhompongsa S, Sriboonchitta S (2017) On constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m} + u{\mathbb{F}}_{p^m}\). Discret Math 340:832–849

    Article  Google Scholar 

  • Dinh HQ, Fan Y, Liu H, Liu X, Sriboonchitta S (2018) On self-dual constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Discret Math 341:324–335

    Article  Google Scholar 

  • Dinh HQ, Nguyen BT, Maneejuk P (2020) Constacyclic codes of length \(8p^s\) over over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Adv Math Commun 56(6):1385–1422

    Google Scholar 

  • Dougherty ST, Skriganov MM (2002) MacWilliams duality and the rosenbloom—-Tsfasman metric. Moscow Math J 2(1):83–99

    Article  MathSciNet  Google Scholar 

  • Hammons AR Jr, Kumar PV, Calderbank AR, Sloane NJA, Sole P (1994) The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans Inform Theory 40(2):301–319

    Article  MathSciNet  Google Scholar 

  • Klin-Eam C, Phuto J (2019) Negacyclic codes of length \(8p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Bull Korean Math Soc 56(6):1385–1422

    MathSciNet  MATH  Google Scholar 

  • Liu X, Xu X (2014) Cyclic and negacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Acta Math Sci 34B(3):829–839

    Article  Google Scholar 

  • Morelos-Zaragoza RH (2006) The art of error correcting coding. Wiley, New York

    Book  Google Scholar 

  • Norton G, Sălăgean-Mandache A (2000) On the structure of linear cyclic codes over finite chain rings. Appl Algebra Eng Commun Comput 10(6):489–506

    Article  MathSciNet  Google Scholar 

  • Ozen M, Siap I (2004) On the structure and decoding of linear codes with respect to the Rosenbloom–Tsfasman metric. SelÁuk J Appl Math 5(2):25–31

    MathSciNet  MATH  Google Scholar 

  • Pless V, Qian Z (1996) Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans Inform Theory 42(5):1594–1600

    Article  MathSciNet  Google Scholar 

  • Pless V, Sole P, Qian Z (1997) Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl 3(1):48–69

    Article  MathSciNet  Google Scholar 

  • Prange E (1957) Cyclic error-correcting codes in two symbols. Air Force Cambridge Research Labs, Bedford (TN-57-103)

    Google Scholar 

  • Rani S (2016) Constacyclic codes, PhD Thesis, IIT Delhi. http://www.eprint.iitd.ac.in/bitstream/2074/7199/1/TH-5125.pdf

  • Rani S (2020) On cyclic and negacyclic Codes of length \(8p^s\) Over \({\mathbb{F}}_{p^m} + uF_{p^m}\). J Indian Math Soc 87(3–4):231–260

    Article  MathSciNet  Google Scholar 

  • Siap I, Ozen M (2004) The complete weight enumerator for codes over \(M_{n\times s}(R)\). Appl Math Lett 17:65–69

    Article  MathSciNet  Google Scholar 

  • Skriganov MM (2001) Coding theory and uniform distributions. Algebra Anal 13(2):191–239

    MathSciNet  Google Scholar 

  • Udaya P, Bonnecaze A (1999) Decoding of cyclic codes over \({\mathbb{F}}_{2} +u{\mathbb{F}}_{2}\). IEEE Trans Inf Theory 45(6):2148–2157

    Article  Google Scholar 

  • Wan Z (1997) Quaternary codes. World Scientific, Singapore

    Book  Google Scholar 

  • Wolf JK, Michelson AM, Levesque AH (1982) On the probability of undetected errors for linear block codes. IEEE Trans Commun 30(2):317–324

    Article  Google Scholar 

  • Yu Rosenbloom M, Tsfasman MA (1997) Codes for the m-metric. Probl Inf Transm 33(1):45–52

    MathSciNet  MATH  Google Scholar 

  • Zhao W, Tang X, Gu Z (2018) All \((\alpha +u\beta )\)-constacyclic codes of length \(np^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl 50:1–16

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are greatful to Dr. Abhishake Rastogi for his useful suggestions and ideas which helped the authors to drive and improve the results. The authors would like to sincerely thank the referees for a very meticulous reading of this manuscript, and for valuable suggestions which helped to create an improved final version. The work of H.Q. Dinh is supported in part by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University. The work of Saroj Rani is supported by the Department of Science and Technology (DST), India under the Grant No. MTR/2018/001250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Rani.

Additional information

Communicated by Thomas Aaron Gulliver.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Dinh, H.Q. RT distances and Hamming distances of constacyclic codes of length \(8p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\). Comp. Appl. Math. 41, 159 (2022). https://doi.org/10.1007/s40314-022-01867-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01867-6

Keywords

Mathematics Subject Classification

Navigation