My bibliography
Save this item
Modelling daily Value-at-Risk using realized volatility and ARCH type models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
- Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Kawakami, Tabito, 2023. "Quantile prediction for Bitcoin returns using financial assets’ realized measures," Finance Research Letters, Elsevier, vol. 55(PA).
- Naeem, Muhammad & Shahbaz, Muhammad & Saleem, Kashif & Mustafa, Faisal, 2019. "Risk analysis of high frequency precious metals returns by using long memory model," Resources Policy, Elsevier, vol. 61(C), pages 399-409.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
- Hammoudeh, Shawkat & Malik, Farooq & McAleer, Michael, 2011.
"Risk management of precious metals,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 435-441.
- Shawkat Hammoudeh & Farooq Malik & Michael McAleer, 2010. "Risk Management of Precious Metals," Working Papers in Economics 10/37, University of Canterbury, Department of Economics and Finance.
- Hammoudeh, S.M. & Malik, F. & McAleer, M.J., 2010. "Risk management of precious metals," Econometric Institute Research Papers EI 2010-48, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Shawkat Hammoudeh & Farooq Malik & Michael McAleer, 2011. "Risk Management of Precious Metals," KIER Working Papers 765, Kyoto University, Institute of Economic Research.
- Shawkat Hammoudeh & Farooq Malik & Michael McAleer, 2011. "Risk Management of Precious Metals," Documentos de Trabajo del ICAE 2011-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Degiannakis, Stavros & Potamia, Artemis, 2017.
"Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data,"
International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
- Degiannakis, Stavros & Potamia, Artemis, 2016. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: inter-day versus intra-day data," MPRA Paper 74670, University Library of Munich, Germany.
- Javier Sánchez García & Salvador Cruz Rambaud, 2022. "A GARCH approach to model short‐term interest rates: Evidence from Spanish economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1621-1632, April.
- RENGIFO, Erick & ROMBOUTS, Jeroen, 2004.
"Dynamic optimal portfolio selection in a VaR framework,"
LIDAM Discussion Papers CORE
2004057, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen Rombouts & E.W. Rengifo, 2004. "Dynamic Optimal Portfolio Selection in a VaR Framework," Cahiers de recherche 04-05, HEC Montréal, Institut d'économie appliquée.
- Helena Beltran & Alain Durré & Pierre Giot, 2004. "How does liquidity react to stress periods in a limit order market?," Working Paper Research 49, National Bank of Belgium.
- Helena, BELTRAN & Alain, DURRE & Pierre, GIOT, 2004.
"Volatility regimes and the provisions of liquidity in order book markets,"
Discussion Papers (ECON - Département des Sciences Economiques)
2005015, Université catholique de Louvain, Département des Sciences Economiques.
- A. Durre & H. Beltran & P. Giot, 2006. "Volatility regimes and the provision of liquidity in order book markets," Post-Print hal-00260906, HAL.
- A. Durre & H. Beltran & P. Giot, 2005. "Volatility regimes and the provision of liquidity in order book markets," Post-Print hal-00268757, HAL.
- A. Durre & H. Beltran & P. Giot, 2006. "Volatility regimes and the provision of liquidity in order book markets," Post-Print hal-00260870, HAL.
- BELTRAN, Helena & DURRE, Alain & GIOT, Pierre, 2005. "Volatility regimes and the provision of liquidity in order book markets," LIDAM Discussion Papers CORE 2005012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- A. Durre & H. Beltran & P. Giot, 2005. "Volatility regimes and the provision of liquidity in order book markets," Post-Print hal-00268760, HAL.
- Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
- Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
- Stavros Degiannakis & Pamela Dent & Christos Floros, 2014.
"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification,"
Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
- Degiannakis, Stavros & Dent, Pamela & Floros, Christos, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," MPRA Paper 80431, University Library of Munich, Germany.
- Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
- Horpestad, Jone B. & Lyócsa, Štefan & Molnár, Peter & Olsen, Torbjørn B., 2019. "Asymmetric volatility in equity markets around the world," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 540-554.
- Degiannakis, Stavros & Floros, Christos, 2013.
"Modeling CAC40 volatility using ultra-high frequency data,"
Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
- Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 Volatility Using Ultra-high Frequency Data," MPRA Paper 80445, University Library of Munich, Germany.
- Trino-Manuel Niguez & Javier Perote, 2004.
"Forecasting the density of asset returns,"
STICERD - Econometrics Paper Series
479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Niguez, Trino-Manuel & Perote, Javier, 2004. "Forecasting the density of asset returns," LSE Research Online Documents on Economics 6845, London School of Economics and Political Science, LSE Library.
- Fengler, Matthias & Okhrin, Ostap, 2012.
"Realized Copula,"
Economics Working Paper Series
1214, University of St. Gallen, School of Economics and Political Science.
- Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- František Čech & Jozef Baruník, 2019.
"Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
- Frantiv{s}ek v{C}ech & Jozef Barun'ik, 2018. "Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities," Papers 1807.11823, arXiv.org.
- Sinha, Pankaj & Agnihotri, Shalini, 2014. "Sensitivity of Value at Risk estimation to NonNormality of returns and Market capitalization," MPRA Paper 56307, University Library of Munich, Germany, revised 26 May 2014.
- João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
- Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Reza Habibi, 2011. "A Simple Estimate of VAR under Garch Modelling," Ekonomia, Cyprus Economic Society and University of Cyprus, vol. 14(2), pages 127-136, Winter.
- repec:ipg:wpaper:2014-053 is not listed on IDEAS
- Viviana Fernandez & Brian M Lucey, 2006.
"Portfolio management implications of volatility shifts: Evidence from simulated data,"
Documentos de Trabajo
219, Centro de Economía Aplicada, Universidad de Chile.
- Viviana Fernandez & Brian M. Lucey, 2006. "Portfolio management implications of volatility shifts: Evidence from simulated data," The Institute for International Integration Studies Discussion Paper Series iiisdp131, IIIS.
- Vasiliki D. Skintzi & Spyros Xanthopoulos-Sisinis, 2007. "Evaluation of correlation forecasting models for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 497-526.
- Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
- Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
- Chun Liu & John M. Maheu, 2008.
"Are There Structural Breaks in Realized Volatility?,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
- Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
- Filip Žikeš & Jozef Baruník, 2016.
"Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
- Filip Zikes & Jozef Barunik, 2013. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," Papers 1308.4276, arXiv.org.
- Žikeš, Filip & Baruník, Jozef, 2014. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," FinMaP-Working Papers 20, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
- Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
- Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009.
"Forecasting realized (co)variances with a block structure Wishart autoregressive model,"
Working Papers
2009-03, Swiss National Bank.
- Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model," Working Papers on Finance 1211, University of St. Gallen, School of Finance.
- Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
- Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
- Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
- Maheu, John M. & McCurdy, Thomas H., 2011.
"Do high-frequency measures of volatility improve forecasts of return distributions?,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
- John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
- John M. Maheu & Thomas H. McCurdy, 2009. "Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?," Working Paper series 19_09, Rimini Centre for Economic Analysis.
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Vortelinos, Dimitrios I. & Lakshmi, Geeta, 2015. "Market risk of BRIC Eurobonds in the financial crisis period," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 295-310.
- Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
- Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
- J. Hambuckers & C. Heuchenne, 2017.
"A robust statistical approach to select adequate error distributions for financial returns,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 137-161, January.
- Hambuckers, Julien & Heuchenne, Cedric, 2017. "A robust statistical approach to select adequate error distributions for financial returns," LIDAM Reprints ISBA 2017031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(1), pages 83-111, March.
- Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
- Cyril Coste & Raphaël Douady & Ilija I Zovko, 2010.
"The StressVaR: A New Risk Concept for Extreme Risk and Fund Allocation,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
hal-02488591, HAL.
- Cyril Coste & Raphaël Douady & Ilija I. Zovko, 2011. "The Stress VaR: A New Risk Concept for Extreme Risk and Fund Allocation," Post-Print hal-00666234, HAL.
- Cyril Coste & Raphaël Douady & Ilija I. Zovko, 2011. "The Stress VaR: A New Risk Concept for Extreme Risk and Fund Allocation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00666234, HAL.
- Cyril Coste & Raphaël Douady & Ilija I Zovko, 2010. "The StressVaR: A New Risk Concept for Extreme Risk and Fund Allocation," Post-Print hal-02488591, HAL.
- Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2015.
"It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, School of Economics, University of Kent.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
- Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2016.
"Intraday volatility interaction between the crude oil and equity markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 1-13.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Intraday volatility interaction between the crude oil and equity markets," Working Papers fe_2015_14, Deakin University, Department of Economics.
- Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
- Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
- Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018.
"Testing for leverage effects in the returns of US equities,"
Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effects in the Returns of US Equities," Documents de travail du Centre d'Economie de la Sorbonne 14022r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2017. "Testing for Leverage Effects in the Returns of US Equities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00973922, HAL.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2018. "Testing for leverage effects in the returns of US equities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01917590, HAL.
- Chaker Aloui, 2015. "Volatility forecasting and risk management in some MENA stock markets: a nonlinear framework," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 5(2), pages 160-192.
- Ke Zhu, 2016.
"Bootstrapping the portmanteau tests in weak auto-regressive moving average models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
- Zhu, Ke, 2015. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," MPRA Paper 61930, University Library of Munich, Germany.
- Stavros Degiannakis & Evdokia Xekalaki, 2007.
"Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models,"
Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
- Kurita, Takamitsu, 2014. "Dynamic characteristics of the daily yen–dollar exchange rate," Research in International Business and Finance, Elsevier, vol. 30(C), pages 72-82.
- Shao, Xi-Dong & Lian, Yu-Jun & Yin, Lian-Qian, 2009. "Forecasting Value-at-Risk using high frequency data: The realized range model," Global Finance Journal, Elsevier, vol. 20(2), pages 128-136.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Odusami, Babatunde O, 2021. "Forecasting the Value-at-Risk of REITs using realized volatility jump models," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
- Trung H. Le, 2024. "Forecasting VaR and ES in emerging markets: The role of time‐varying higher moments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 402-414, March.
- Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Eunho Koo & Geonwoo Kim, 2023. "A New Neural Network Approach for Predicting the Volatility of Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1665-1679, April.
- Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
- Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
- Hamidreza Arian & Hossein Poorvasei & Azin Sharifi & Shiva Zamani, 2020. "The Uncertain Shape of Grey Swans: Extreme Value Theory with Uncertain Threshold," Papers 2011.06693, arXiv.org.
- Huang, Chuangxia & Cai, Yaqian & Yang, Xiaoguang & Deng, Yanchen & Yang, Xin, 2023. "Laplacian-energy-like measure: Does it improve the Cross-Sectional Absolute Deviation herding model?," Economic Modelling, Elsevier, vol. 127(C).
- Dilip Kumar, 2020. "Value-at-Risk in the Presence of Structural Breaks Using Unbiased Extreme Value Volatility Estimator," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 587-610, September.
- Masato Ubukata & Toshiaki Watanabe, 2011. "Pricing Nikkei 225 Options Using Realized Volatility," IMES Discussion Paper Series 11-E-18, Institute for Monetary and Economic Studies, Bank of Japan.
- Anjum, Hassan & Malik, Farooq, 2020. "Forecasting risk in the US Dollar exchange rate under volatility shifts," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008.
"Quantile forecasts of daily exchange rate returns from forecasts of realized volatility,"
Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
- Clements, Michael P. & Galvao, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," Economic Research Papers 269747, University of Warwick - Department of Economics.
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
- Christian T. Brownlees & Giampiero M. Gallo, 2010.
"Comparison of Volatility Measures: a Risk Management Perspective,"
Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
- Christian T. Brownlees & Giampiero M. Gallo, 2007. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2007_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Lima, Luiz Renato & Néri, Breno Pinheiro, 2007.
"Comparing Value-at-Risk Methodologies,"
Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
- Luiz Renato Lima & Breno Pinheiro Néri, 2006. "Comparing Value-at-Risk Methodologies," Computing in Economics and Finance 2006 1, Society for Computational Economics.
- Lima, Luiz Renato Regis de Oliveira & Neri, Breno de Andrade Pinheiro, 2006. "Comparing value-at-risk methodologies," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 629, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.
- Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017.
"Positive semidefinite integrated covariance estimation, factorizations and asynchronicity,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, Department of Economics and Business Economics, Aarhus University.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
- Fernandez, Viviana & Lucey, Brian M., 2007. "Portfolio management under sudden changes in volatility and heterogeneous investment horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 612-624.
- Harvey, Andrew & Sucarrat, Genaro, 2014.
"EGARCH models with fat tails, skewness and leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
- Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017.
"Forecasting With the Standardized Self‐Perturbed Kalman Filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
- Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
- Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
- Huang, Jingjing & Shang, Pengjian & Zhao, Xiaojun, 2012. "Multifractal diffusion entropy analysis on stock volatility in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5739-5745.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013.
"Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence,"
International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting Value-at-Risk and Expected Shortfall using Fractionally Integrated Models of Conditional Volatility: International Evidence," MPRA Paper 80433, University Library of Munich, Germany.
- Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014.
"Realized stochastic volatility with leverage and long memory,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
- Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2012. "Realized stochastic volatility with leverage and long memory," CIRJE F-Series CIRJE-F-869, CIRJE, Faculty of Economics, University of Tokyo.
- Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2013. "Realized Stochastic Volatility with Leverage and Long Memory," CIRJE F-Series CIRJE-F-880, CIRJE, Faculty of Economics, University of Tokyo.
- Y. C. Su & H. C. Huang & Y. J. Lin, 2011. "GJR-GARCH model in value-at-risk of financial holdings," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1819-1829, December.
- Mendes, Beatriz Vaz de Melo & Accioly, Victor Bello, 2012. "On the dependence structure of realized volatilities," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 1-9.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Chien-Liang Chiu & Ming-Chih Lee & Jui-Cheng Hung, 2005. "Estimation of Value-at-Risk under jump dynamics and asymmetric information," Applied Financial Economics, Taylor & Francis Journals, vol. 15(15), pages 1095-1106.
- André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013.
"Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
- Santos, André A. P. & Nogales, Francisco J., 2009. "Comparing univariate and multivariate models to forecast portfolio value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws097222, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bogdan, Dima & Ştefana Maria, Dima & Roxana, Ioan, 2022. "A Value-at-Risk forecastability indicator in the framework of a Generalized Autoregressive Score with “Asymmetric Laplace Distribution”," Finance Research Letters, Elsevier, vol. 45(C).
- Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
- Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
- Taewook Lee & Moosup Kim & Changryong Baek, 2015. "Tests for Volatility Shifts in Garch Against Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 127-153, March.
- Berger, Theo & Gençay, Ramazan, 2018. "Improving daily Value-at-Risk forecasts: The relevance of short-run volatility for regulatory quality assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 30-46.
- Paolo Capelli & Federica Ielasi & Angeloantonio Russo, 2021. "Forecasting volatility by integrating financial risk with environmental, social, and governance risk," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(5), pages 1483-1495, September.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009.
"Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange,"
Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
- Georges Dionne & Pierre Duchesne & Maria Pacurar, 2005. "Intraday Value at Risk (IVaR) Using Tick-by-Tick Data with Application to the Toronto Stock Exchange," Cahiers de recherche 0533, CIRPEE.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2005. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Working Papers 05-9, HEC Montreal, Canada Research Chair in Risk Management.
- Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.
- Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
- F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
- Mei, Dexiang & Xie, Yutang, 2022. "U.S. grain commodity futures price volatility: Does trade policy uncertainty matter?," Finance Research Letters, Elsevier, vol. 48(C).
- Grané, A. & Veiga, H., 2008. "Accurate minimum capital risk requirements: A comparison of several approaches," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2482-2492, November.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Stavros Degiannakis, 2008.
"ARFIMAX and ARFIMAX-TARCH realized volatility modeling,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
- Degiannakis, Stavros, 2008. "ARFIMAX and ARFIMAX-TARCH Realized Volatility Modeling," MPRA Paper 80465, University Library of Munich, Germany.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008.
"Volatility forecasting: Intra-day versus inter-day models,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," MPRA Paper 96322, University Library of Munich, Germany.
- Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
- repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Goossens Jan-Willem & Hoesel Stan van & Kroon Leo, 2002. "On solving multi-type line planning problems," Research Memorandum 017, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bradley T. Ewing & Farooq Malik & Hassan Anjum, 2019. "Forecasting value‐at‐risk in oil prices in the presence of volatility shifts," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 341-350, July.
- Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
- Härdle, Wolfgang Karl & Mungo, Julius, 2008. "Value-at-risk and expected shortfall when there is long range dependence," SFB 649 Discussion Papers 2008-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously ( Revised in March 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2," CARF F-Series CARF-F-108, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
- Emrah Ismail Cevik & Sel Dibooglu & Atif Awad Abdallah & Eisa Abdulrahman Al-Eisa, 2021. "Oil prices, stock market returns, and volatility spillovers: evidence from Saudi Arabia," International Economics and Economic Policy, Springer, vol. 18(1), pages 157-175, February.
- Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
- Yves Dominicy & Harry-Paul Vander Elst, 2015. "Macro-Driven VaR Forecasts: From Very High to Very Low Frequency Data," Working Papers ECARES ECARES 2015-41, ULB -- Universite Libre de Bruxelles.
- Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
- Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
- Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jian Zhou, 2012. "Extreme risk measures for REITs: a comparison among alternative methods," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 113-126, January.
- Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
- Xiao-Ming Li & Qing Xu, 2007. "Evaluating density forecasts of the model with a conditional skewed-t distribution for China's stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(3), pages 213-227.
- Dimitrios P. Louzis & Spyros Xanthopoulos - Sissinis & Apostolos P. Refenes, 2012. "Stock index Value-at-Risk forecasting: A realized volatility extreme value theory approach," Economics Bulletin, AccessEcon, vol. 32(1), pages 981-991.
- Ivana Komunjer, 2007.
"Asymmetric power distribution: Theory and applications to risk measurement,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
- Ivana Komunjer, 2004. "Asymmetric Power Distribution: Theory and Applications to Risk Measurement," Econometric Society 2004 Latin American Meetings 44, Econometric Society.
- Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
- Wen Cheong, Chin & Hassan Shaari Mohd Nor, Abu & Isa, Zaidi, 2007. "Asymmetry and long-memory volatility: Some empirical evidence using GARCH," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 651-664.
- Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
- repec:hum:wpaper:sfb649dp2008-006 is not listed on IDEAS
- Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
- Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
- Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
- Halbleib, Roxana & Pohlmeier, Winfried, 2012. "Improving the value at risk forecasts: Theory and evidence from the financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1212-1228.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003.
"Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility,"
PIER Working Paper Archive
03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
- Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
- Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
- Shijia Song & Handong Li, 2023. "A new model for forecasting VaR and ES using intraday returns aggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1039-1054, August.
- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Kai Schindelhauer & Chen Zhou, 2018. "Value-at-Risk prediction using option-implied risk measures," DNB Working Papers 613, Netherlands Central Bank, Research Department.
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022.
"Next generation models for portfolio risk management: An approach using financial big data,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
- Glenn Kit Foong Ho & Sirimon Treepongkaruna & Marvin Wee & Chaiyuth Padungsaksawasdi, 2022. "The effect of short selling on volatility and jumps," Australian Journal of Management, Australian School of Business, vol. 47(1), pages 34-52, February.
- Köksal, Bülent & Orhan, Mehmet, 2012. "Market risk of developed and developing countries during the global financial crisis," MPRA Paper 37523, University Library of Munich, Germany.
- Degiannakis, Stavros, 2008. "Forecasting Vix," MPRA Paper 96307, University Library of Munich, Germany.
- Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
- P. Herings & Kirsten Rohde, 2006.
"Time-inconsistent preferences in a general equilibrium model,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(3), pages 591-619, November.
- Herings, P.J.J. & Rohde, K.I.M., 2004. "Time-inconsistent preferences in a general equilibrium model," Research Memorandum 017, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Wang Yu-Jen & Chung Huimin & Guo Jia-Hau, 2013. "A value-at-risk analysis of carry trades using skew-GARCH models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 439-459, September.
- I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
- Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
- Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
- Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
- Markku Lanne, 2006.
"A Mixture Multiplicative Error Model for Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
- Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Economics Working Papers ECO2006/3, European University Institute.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.
- Talpsepp, Tõnn & Rieger, Marc Oliver, 2010. "Explaining asymmetric volatility around the world," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 938-956, December.
- Stavros Degiannakis & Andreas Andrikopoulos & Timotheos Angelidis & Christos Floros, 2013. "Return dispersion, stock market liquidity and aggregate economic activity," Working Papers 166, Bank of Greece.
- Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Araújo Santos, P. & Fraga Alves, M.I., 2013. "Forecasting Value-at-Risk with a duration-based POT method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 295-309.
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Sobreira, Nuno & Louro, Rui, 2020. "Evaluation of volatility models for forecasting Value-at-Risk and Expected Shortfall in the Portuguese stock market," Finance Research Letters, Elsevier, vol. 32(C).
- F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
- Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
- Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
- Sang Hoon Kang & Seong-Min Yoon, 2009. "Value-at-Risk Analysis for Asian Emerging Markets: Asymmetry and Fat Tails in Returns Innovation," Korean Economic Review, Korean Economic Association, vol. 25, pages 387-411.
- Hood, Matthew & Malik, Farooq, 2018. "Estimating downside risk in stock returns under structural breaks," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 102-112.
- Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
- Orla McCullagh & Mark Cummins & Sheila Killian, 2023. "Decoupling VaR and regulatory capital: an examination of practitioners’ experience of market risk regulation," Journal of Banking Regulation, Palgrave Macmillan, vol. 24(3), pages 321-336, September.
- Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
- Dariusz Gołȩbiewski & Tomasz Barszcz & Wioletta Skrodzka & Igor Wojnicki & Andrzej Bielecki, 2022. "A New Approach to Risk Management in the Power Industry Based on Systems Theory," Energies, MDPI, vol. 15(23), pages 1-19, November.
- Mauricio Zevallos, 2019. "A Note on Forecasting Daily Peruvian Stock Market VolatilityRisk Using Intraday Returns," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(84), pages 94-101.
- Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
- Ané, Thierry & Métais, Carole, 2009. "The distribution of realized variances: Marginal behaviors, asymmetric dependence and contagion effects," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 134-150, June.
- Ane, Thierry, 2006. "An analysis of the flexibility of Asymmetric Power GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1293-1311, November.