[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Translation

This is an improved version of AfriCOMET-STL (single task) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference. Different from the original AfriCOMET-STL, this MT evaluation model is based on an improved African enhanced encoder, afro-xlmr-large-76L, which leads better performance on African-related machine translation evaluation, verified in WMT 2024 Metrics Shared Task.

Paper

AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages (Wang et al., arXiv 2023)

License

Apache-2.0

Usage (AfriCOMET)

Using this model requires unbabel-comet to be installed:

pip install --upgrade pip  # ensures that pip is current 
pip install unbabel-comet

Then you can use it through comet CLI:

comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model masakhane/africomet-stl

Or using Python:

from comet import download_model, load_from_checkpoint

model_path = download_model("masakhane/africomet-stl-1.1")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
        "mt": "Nadal's head to head record against the Canadian is 7–2.",
        "ref": "Nadal scored seven unanswered points against Canada."
    },
    {
        "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
        "mt": "He recently lost against Raonic in the Brisbane Open.",
        "ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)

Intended uses

Our model is intented to be used for MT evaluation.

Given a triplet with (source sentence, translation, reference translation), it outputs a single score between 0 and 1 where 1 represents a perfect translation.

Languages Covered:

There are 76 languages available :

  • English (eng)
  • Amharic (amh)
  • Arabic (ara)
  • Somali (som)
  • Kiswahili (swa)
  • Portuguese (por)
  • Afrikaans (afr)
  • French (fra)
  • isiZulu (zul)
  • Malagasy (mlg)
  • Hausa (hau)
  • chiShona (sna)
  • Egyptian Arabic (arz)
  • Chichewa (nya)
  • Igbo (ibo)
  • isiXhosa (xho)
  • Yorùbá (yor)
  • Sesotho (sot)
  • Kinyarwanda (kin)
  • Tigrinya (tir)
  • Tsonga (tso)
  • Oromo (orm)
  • Rundi (run)
  • Northern Sotho (nso)
  • Ewe (ewe)
  • Lingala (lin)
  • Twi (twi)
  • Nigerian Pidgin (pcm)
  • Ga (gaa)
  • Lozi (loz)
  • Luganda (lug)
  • Gun (guw)
  • Bemba (bem)
  • Efik (efi)
  • Luvale (lue)
  • Luba-Lulua (lua)
  • Tonga (toi)
  • Tshivenḓa (ven)
  • Tumbuka (tum)
  • Tetela (tll)
  • Isoko (iso)
  • Kaonde (kqn)
  • Zande (zne)
  • Umbundu (umb)
  • Mossi (mos)
  • Tiv (tiv)
  • Luba-Katanga (lub)
  • Fula (fuv)
  • San Salvador Kongo (kwy)
  • Baoulé (bci)
  • Ruund (rnd)
  • Luo (luo)
  • Wolaitta (wal)
  • Swazi (ssw)
  • Lunda (lun)
  • Wolof (wol)
  • Nyaneka (nyk)
  • Kwanyama (kua)
  • Kikuyu (kik)
  • Fon (fon)
  • Bambara (bam)
  • Chokwe (cjk)
  • Dinka (dik)
  • Dyula (dyu)
  • Kabyle (kab)
  • Kamba (kam)
  • Kabiyè (kbp)
  • Kanuri (knc)
  • Kimbundu (kmb)
  • Kikongo (kon)
  • Nuer (nus)
  • Sango (sag)
  • Tamasheq (taq)
  • Tamazight (tzm)
  • N'ko (nqo)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including masakhane/africomet-stl-1.1