[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

An extension library for NumPy that implements common array operations not present in NumPy

License

Notifications You must be signed in to change notification settings

3jane/numpy_ext

Repository files navigation

NumPy Extensions

Build Status - GitHub Build Status - GitHub Deploy PYPI Coverage Status

An extension library for NumPy that implements common array operations not present in NumPy.

  • npext.fill_na(...)
  • npext.drop_na(...)
  • npext.rolling(...)
  • npext.expanding(...)
  • npext.rolling_apply(...)
  • npext.expanding_apply(...)
  • # etc

Documentation

Installation

Regular installation:

pip install numpy_ext

For development:

git clone https://github.com/3jane/numpy_ext.git
cd numpy_ext
pip install -e .[dev]  # note: make sure you are using pip>=20

Examples

Here are few common examples of how the library is used. The rest is available in the documentation.

  1. Apply a function to a rolling window over the provided array
import numpy as np
import numpy_ext as npext

a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
window = 3

npext.rolling_apply(np.sum, window, a)

> array([nan, nan,  3.,  6.,  9., 12., 15., 18., 21., 24.])
  1. Same as the above, but with a custom function, two input arrays and parallel computation using joblib:
def func(array_first, array_second, param):
    return (np.min(array_first) + np.sum(array_second)) * param


a = np.array([0, 1, 2, 3])
b = np.array([3, 2, 1, 0])

npext.rolling_apply(func, 2, a, b, n_jobs=2, param=-1)

> array([nan, -5., -4., -3.])
  1. Same as the first example, but using rolling function:
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
window = 3

rolls = npext.rolling(a, window, as_array=True)

np.sum(rolls, axis=1)

> array([nan, nan,  3.,  6.,  9., 12., 15., 18., 21., 24.])
  1. Apply a function with multiple output to a rolling window over the provided array, with no nans prepend
res = npext.rolling_apply(
        lambda x: (max(x), min(x)),
        3,
        np.array([1, 2, 5, 1, 6, 4, 0]),
        prepend_nans=False,
    )

> array([[5, 1],
       [5, 1],
       [6, 1],
       [6, 1],
       [6, 0]])

License

MIT Licence

The software is distributed under MIT license.

About

An extension library for NumPy that implements common array operations not present in NumPy

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages