Official code for "Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models".
conda create -n lsrna python=3.10
conda activate lsrna
pip install -r requirements.txt
Note:
Although our LSRNA framework is designed to be compatible with any reference-based method,
this repo provides example code for LSRNA-DemoFusion, as DemoFusion is a pioneering reference-based approach.
CUDA_VISIBLE_DEVICES=0 python main.py \
--prompt "A well-worn baseball glove and ball sitting on fresh-cut grass." \
--negative_prompt "blurry, ugly, duplicate, poorly drawn, deformed, mosaic" \
--height 2048 \
--width 2048 \
--seed 0 \
--lsr_path "lsr/swinir-liif-latent-sdxl.pth" \
--rna_min_std 0.0 \
--rna_max_std 1.2 \
--inversion_depth 30 \
--save_dir "results" \
#--low_vram
Feel free to adjust the RNA hyperparameters (e.g., --rna_max_std) to adjust the level of detail in the generated images.
If you’re running out of VRAM, enable the low-VRAM mode with --low_vram
.
We also provide a run.sh
script for the generation.
Additional results can be found on the project page.
@inproceedings{jeong2025latent,
title={Latent space super-resolution for higher-resolution image generation with diffusion models},
author={Jeong, Jinho and Han, Sangmin and Kim, Jinwoo and Kim, Seon Joo},
booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
pages={2355--2365},
year={2025}
}
This repo is based on DemoFusion and LIIF.