8000 GitHub - 2231122/PCOD: [ECCV2024] "Just a Hint: Point-Supervised Camouflaged Object Detection"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

2231122/PCOD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 

Repository files navigation

[ECCV2024] Just a Hint: Point-Supervised Camouflaged Object Detection

Framework

Prerequisites

  • python==3.7.5
  • torch==1.13.1
  • Torchvision==0.14.1
  • Scikit_image==0.19.2
  • Skimage==0.0
  • timm==0.3.2
  • tensorboard==2.11.2
  • tensorboardX==2.5.1
  • tqdm==4.64.1
  • einops==0.4.1
  • markdown==3.4.3
  • markplotlib==3.5.2
  • numpy==1.12.6
  • opencv-python==4.7.0.72
  • openpyxl==3.1.2
  • pillow==9.5.0
  • pysodmetrics==1.4.0
  • PyYAML==6.0
  • tabulate==0.9.0

Download P-COD Dataset

  • Point supervised PCOD: google

Train

  • Generate square clusters (d*d) by point label, d*d cluster , After that training generates Pred_Map ,then , run Point2gt.py to generate the final supervisor labels .

  • Using the labels generated above for training ( "1" stands for foregrounds, "2" for backgrounds, and "0" for unlabeled regions. (The image is viewed as black because its range is 0-255)) . Put it in './CodDataset/train/Label'

  • Download training dataset and testing dataset . Put them in the right path, including './CodDataset/train/Imgs', '/CodDataset/test/CAMO/(GT+Imgs)', '/CodDataset/test/COD10K/(GT+Imgs)'.... and '/CodDataset/test/HCK4/(GT+Imgs)'

  • Download pretrain weight and put it in './Point supervised camouflaged object detection/xxx.pth'

  • Run python train.py.

Test and Evaluate

  • Modify path and filename.
  • Run python test.py

Experimental Results

result

Acknowledgement

Weakly-Supervised Camouflaged Object Detection with Scribble Annotations

About

[ECCV2024] "Just a Hint: Point-Supervised Camouflaged Object Detection"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0