8000 GitHub - zfxu/Robust-Medical-Segmentation
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

zfxu/Robust-Medical-Segmentation

 
 

Repository files navigation

Installation

For Conda users, you can create a new Conda environment using

conda create -n robustseg python=3.10

after activating the environment with

source activate robustseg

try to install all the dependencies with

pip install -r requirements.txt

also install the conda environment for the jupyter notebook kernel.

python -m ipykernel install --user --name=robustseg

Dataset

Download the ATLAS data, prostate MRI data and Cardiac MRI data, and put extracted the data into ./data.

data/
├── ATLAS_R2.0/
  ├── ATLAS_2/
    ├── Training/
    ├── ...
    └── ...
├── Processed_data_nii/
  ├── BIDMC/
  ├── ...
  └── ...
├── OpenDataset/
  ├── Training/
  ├── ...
  └── ...

Run datapreprocessing_ATLAS.ipynb, datapreprocessing_MnMCardiac.ipynb and datapreprocessing_Prostate.ipynb in the ./data folder to preprocess the data step by step. After preprocessing, we should have the data format like:

data/
├── Dataset_Cardiac/
  ├── 1/
  ├── ...
  └── 5/
├── Dataset_Prostate/
  ├── ISBI/
  ├── ...
  ├── HK/
├── Dataset_Brain_lesion/
  ├── GE Signa Excite/
  ├── ...
  └── Siemens Skyra/

Training

Stardard training.

Cardiac

python UNetSegmentationTrain.py --name 3DUNet_vanilla_Cardiac_det --tensorboard --features 30 --deepsupervision --batch-size 30 --patch-size 128 128 8 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 1 --gpu 0 --det

Prostate

python UNetSegmentationTrain.py --name 3DUNet_vanilla_Prostate_det --tensorboard --features 30 --deepsupervision --batch-size 32 --patch-size 64 64 32 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 2 --gpu 0 --det

Brain lesion

python UNetSegmentationTrain.py --name 3DUNet_vanilla_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --det

Class balanced training.

Brain lesion asymmetric large margin loss

python UNetSegmentationTrain.py --name 3DUNet_asymargin_2_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --asy-margin 2 --det

Brain lesion asymmetric focal loss

python UNetSegmentationTrain.py --name 3DUNet_asyfocal_6_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --asy-focal 6 --det

Robust training

Brain lesion mixup

python UNetSegmentationTrain.py --name 3DUNet_mixup_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --mixup --det

Brain lesion assymetric mixup

python UNetSegmentationTrain.py --name 3DUNet_asymixup_m02_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --mixup --asy --alpha 1 --det

Brain lesion adversarial training

python UNetSegmentationTrain.py --name 3DUNet_adv_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --adv --det

Brain lesion GIN

python UNetSegmentationTrain.py --name 3DUNet_GIN_ATLAS_det --tensorboard --features 30 --deepsupervision --batch-size 2 --patch-size 128 128 128 --epochs 1000 --evalevery 100 --numIteration 100 --sgd0orAdam1orRms2 0 --lr 1e-2 --print-freq 20 --ATLAS0Cardiac1Prostate2 0 --gpu 0 --GIN --det

Evaluation

We provide pretrained segmentation models here.

UNetSegmentationTest.ipynb

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 88.4%
  • Python 11.6%
0