8000 GitHub - ysc/jsearch: jsearch:高性能的全文检索工具包
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ysc/jsearch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。

使用方法

1、依赖
    <dependency>
        <groupId>org.apdplat</groupId>
        <artifactId>jsearch</artifactId>
        <version>1.0</version>
    </dependency>
2、索引
    //存储索引的文件
    String index = "data/index";
    //存储以行为单位的原文的文件
    String indexText = "data/index_text";
    int indexLengthLimit = 1000;
    //textPath可以为目录也可以为文件
    String textPath = "data/original/text";
    TextIndexer textIndexer = new TextIndexer(index, indexText, indexLengthLimit);
    textIndexer.indexDir(textPath);
3、搜索
    int pageSize = 100;
    TextSearcher textSearcher = new TextSearcher(index, indexText);
    textSearcher.setPageSize(pageSize);
    textSearcher.setScore(new WordFrequencyScore());
    Hits hits = textSearcher.search("hive function", SearchMode.INTERSECTION);
    System.out.println("搜索结果数:"+hits.getHitCount());
    AtomicInteger j = new AtomicInteger();
    hits.getDocs().forEach(doc -> System.out.println("Result" + j.incrementAndGet() + "、ID:" + doc.getId() + ",Score:" + doc.getScore() + ",Text:" + doc.getText()));

索引文件结构

1、一个词的索引由=分割的三部分组成:
    第一部分是词
    第二部分是这个词在多少个文档中出现过(上限1000)
    第三部分是倒排表
2、倒排表由多个倒排表项目组成,倒排表项目之间使用|分割
3、倒排表项目的组成又分为三部分,用_分割:
    第一部分是文档ID
    第二部分是词频
    第三部分是词的位置
4、词的位置用:分割

例如:
shingles=31=47466_1_2|1_1_6|1_1_1|2_1_5|67_1_1|903_1_3|17_1_5|1_3_4:6:11
表示词 shingles 的索引:
词:shingles
有 31 个文档包含 shingles 这个词
包含这个词的第一篇文档的ID是47466,
shingles 的词频是1,出现 shingles 的位置是2
文档内容为:
A better solution is to use shingles, which are compound tokens created 
from multiple adjacent tokens.
对文档内容进行分词并移除停用词之后的结果为:
[solution, shingles, compound, tokens, created, multiple, adjacent, tokens]

包含这个词的第二篇文档的ID是47466+1=47467,
shingles 的词频是1,出现 shingles 的位置是6
文档内容为:
Lucene has a sandbox module that simplifies adding shingles to your index, 
described in section 8.3.2
对文档内容进行分词并移除停用词之后的结果为:
[lucene, sandbox, module, simplifies, adding, shingles, index, section]

包含这个词的第八篇文档的ID是47466+1+1+2+67+903+17+1=48458,
shingles 的词频是3,出现 shingles 的位置分别是4、6、11
文档内容为:
For example the sentence “please divide this sentence into shingles” 
might be tokenized into the shingles “please divide”, “divide this”, 
“this sentence”, “sentence into” and “into shingles”
对文档内容进行分词并移除停用词之后的结果为:
[sentence, divide, sentence, shingles, tokenized, shingles, divide, divide, sentence, sentence, shingles]

这里需要注意的是位置不是和原文一一对应的,而是和去除停用词后的位置一一对应的
分词使用word分词提供的针对纯英文文本的分词器

停用词的定义

word分词提供的针对纯英文文本的分词器

word分词

https://travis-ci.org/ysc/jsearch

About

jsearch:高性能的全文检索工具包

Resources

License

Stars

Watchers

Forks

Packages

No packages published
0