🔍 About | 🔨 Setup | 🚢 How to Pretrain | ⛵ How to Finetune | 🚀 Quick Start | 🔗 Citation
🔥 NEWS: The paper "CBraMod: A Criss-Cross Brain Foundation Model for EEG Decoding" has been accepted by ICLR 2025!
We propose CBraMod, a novel EEG foundation model, for EEG decoding on various clinical and BCI application. The preprint version of our paper is available at arXiv. The camera-ready version of the paper will be available at OpenReview.
Install Python.
Install PyTorch.
Install other requirements:
pip install -r requirements.txt
You can pretrain CBraMod on our pretraining dataset or your custom pretraining dataset using the following code:
python pretrain_main.py
We have released a pretrained checkpoint on Hugginface🤗.
You can finetune CBraMod on our selected downstream datasets using the following code:
python finetune_main.py
You can fine-tune the pretrained CBraMod on your custom downstream dataset using the following example code:
import torch
import torch.nn as nn
from models.cbramod import CBraMod
from einops.layers.torch import Rearrange
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = CBraMod().to(device)
model.load_state_dict(torch.load('pretrained_weights/pretrained_weights.pth', map_location=device))
model.proj_out = nn.Identity()
classifier = nn.Sequential(
Rearrange('b c s p -> b (c s p)'),
nn.Linear(22*4*200, 4*200),
nn.ELU(),
nn.Dropout(0.1),
nn.Linear(4 * 200, 200),
nn.ELU(),
nn.Dropout(0.1),
nn.Linear(200, 4),
).to(device)
# mock_eeg.shape = (batch_size, num_of_channels, time_segments, points_per_patch)
mock_eeg = torch.randn((8, 22, 4, 200)).to(device)
# logits.shape = (batch_size, num_of_classes)
logits = classifier(model(mock_eeg))
If you're using this repository in your research or applications, please cite using the following BibTeX:
@inproceedings{wang2025cbramod,
title={{CB}raMod: A Criss-Cross Brain Foundation Model for {EEG} Decoding},
author={Jiquan Wang and Sha Zhao and Zhiling Luo and Yangxuan Zhou and Haiteng Jiang and Shijian Li and Tao Li and Gang Pan},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=NPNUHgHF2w}
}