8000 GitHub - wilhelm-lab/oktoberfest: Rescoring and spectral library generation pipeline for proteomics.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

wilhelm-lab/oktoberfest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI Python Version License Read the Docs Build Tests Codecov pre-commit Black

Oktoberfest: Rescoring, Collision Energy Calibration and Spectral Library Generation for Proteomics

Oktoberfest is a python tool for collision energy calibration, rescoring search results and generating spectral libraries for proteomics research within the Prosit ecosystem. It offers an end to end pipeline that takes search results, predicts peptide properties using koina, plots summaries and quality control figures and performs FDR estimation with either mokapot or percolator.

Documentation

The official Oktoberfest documentation can be found at https://oktoberfest.readthedocs.io.

How to cite

Please always cite the main publication

[Oktoberfest] Picciani M, Gabriel W, Giurcoiu VG et al. (2023), Oktoberfest: Open-source spectral library generation and rescoring pipeline based on Prosit, Proteomics

Please cite the Prosit model(s) you are using

When using Prosit

[Prosit] Gessulat S, Schmidt T, Zolg DP et al. (2019), PROSIT: Proteome-wide prediction of peptide tandem mass spectra by deep learning, Nature Methods

[Prosit-HLA] Wilhelm M, Zolg DP, Graber M et al. (2021), Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics, Nature Communications

When using Prosit-TMT

[Prosit-TMT] Gabriel W, The M, Zolg D et al. (2022), Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides, Analytical Chemistry

When using Prosit-timsTOF

[Prosit-timsTOF] Adams C, Gabriel W, Laukens K et al. (2024), Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF, Nature Communications

Please cite when using protein grouping and quantification

[PickedGroupFDR] The M, Samaras P, Kuster B, Wilhelm, M. (2022), Reanalysis of ProteomicsDB using an accurate, sensitive, and scalable false discovery rate estimation approach for protein groups, Molecular & Cellular Proteomics

About

Rescoring and spectral library generation pipeline for proteomics.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 17

0