Modified version of the AffordanceNet, adding support for cuDNN 8 following suggestions from the caffe repo.
Support for cuDNN 8: Pull request by artyom-beilis (BVLC/caffe#7000) Also some changes from: https://github.com/Qengineering/caffe
Note 1: as reported in the pull request, and in the caffe forums, it seems newer versions of CUDA consumes more memory, as many caffe methods depends on older CUDA methods and are not optimized for the newer versions. Example: Ran in a GTX1080 8GB with cuDNN 7.6.5 and CUDA 10.1, uses about ~6GB. In a RTX4080 16GB with cuDNN 8.8 and CUDA 12.0, uses about ~8GB.
Note 2: Trained affordances also changed for my own experiments.
Original ReadMe from AffordanceNet:
By Thanh-Toan Do*, Anh Nguyen*, Ian Reid (* equal contribution)
-
Caffe
- Install Caffe: Caffe installation instructions.
- Caffe must be built with support for Python layers.
-
Hardware
- To train a full AffordanceNet, you'll need a GPU with ~11GB (e.g. Titan, K20, K40, Tesla, ...).
- To test a full AffordanceNet, you'll need ~6GB GPU.
-
[Optional] For robotic demo
-
Clone the AffordanceNet repository into your
$AffordanceNet_ROOT
folder. -
Build
Caffe
andpycaffe
:cd $AffordanceNet_ROOT/caffe-affordance-net
# Now follow the Caffe installation instructions: http://caffe.berkeleyvision.org/installation.html
# If you're experienced with Caffe and have all of the requirements installed and your Makefile.config in place, then simply do:
make -j8 && make pycaffe
-
Build the Cython modules:
cd $AffordanceNet_ROOT/lib
make
-
Download pretrained weights (Google Drive, One Drive). This weight is trained on the training set of the IIT-AFF dataset:
- Extract the file you downloaded to
$AffordanceNet_ROOT
- Make sure you have the caffemodel file like this:
'$AffordanceNet_ROOT/pretrained/AffordanceNet_200K.caffemodel
- Extract the file you downloaded to
After successfully completing installation, you'll be ready to run the demo.
-
Export pycaffe path:
export PYTHONPATH=$AffordanceNet_ROOT/caffe-affordance-net/python:$PYTHONPATH
-
Demo on static images:
cd $AffordanceNet_ROOT/tools
python demo_img.py
- You should see the detected objects and their affordances.
-
(Optional) Demo on depth camera (such as Asus Xtion):
- With AffordanceNet and the depth camera, you can easily select the interested object and its affordances for robotic applications such as grasping, pouring, etc.
- First, launch your depth camera with ROS, OpenNI, etc.
cd $AffordanceNet_ROOT/tools
python demo_asus.py
- You may want to change the object id and/or affordance id (line
380
,381
indemo_asus.py
). Currently, we select thebottle
and itsgrasp
affordance. - The 3D grasp pose can be visualized with rviz. You should see something like this:
-
We train AffordanceNet on IIT-AFF dataset
- We need to format IIT-AFF dataset as in Pascal-VOC dataset for training.
- For your convinience, we did it for you. Just download this file (Google Drive, One Drive) and extract it into your
$AffordanceNet_ROOT
folder. - The extracted folder should contain three sub-folders:
$AffordanceNet_ROOT/data/cache
,$AffordanceNet_ROOT/data/imagenet_models
, and$AffordanceNet_ROOT/data/VOCdevkit2012
.
-
Train AffordanceNet:
cd $AffordanceNet_ROOT
./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]
- e.g.:
./experiments/scripts/faster_rcnn_end2end.sh 0 VGG16 pascal_voc
- We use
pascal_voc
alias although we're training using the IIT-AFF dataset.
- AffordanceNet vs. Mask-RCNN: AffordanceNet can be considered as a general version of Mask-RCNN when we have multiple classes inside each instance.
- The current network achitecture is slightly diffrent from the paper, but it achieves the same accuracy.
- Train AffordanceNet on your data:
- Format your images as in Pascal-VOC dataset (as in
$AffordanceNet_ROOT/data/VOCdevkit2012
folder). - Prepare the affordance masks (as in
$AffordanceNet_ROOT/data/cache
folder): For each object in the image, we need to create a mask and save as a .sm file. See$AffordanceNet_ROOT/utils
for details.
- Format your images as in Pascal-VOC dataset (as in
If you find AffordanceNet useful in your research, please consider citing:
@inproceedings{AffordanceNet18,
title={AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection},
author={Do, Thanh-Toan and Nguyen, Anh and Reid, Ian},
booktitle={International Conference on Robotics and Automation (ICRA)},
year={2018}
}
6ED4 If you use IIT-AFF dataset, please consider citing:
@inproceedings{Nguyen17,
title={Object-Based Affordances Detection with Convolutional Neural Networks and Dense Conditional Random Fields},
author={Nguyen, Anh and Kanoulas, Dimitrios and Caldwell, Darwin G and Tsagarakis, Nikos G},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2017},
}
MIT License
This repo used a lot of source code from Faster-RCNN
If you have any questions or comments, please send us an email: thanh-toan.do@adelaide.edu.au
and anh.nguyen@iit.it