8000 GitHub - trongldwork/YOLOv11-pt: YOLOv11 re-implementation using PyTorch
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

trongldwork/YOLOv11-pt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv11 re-implementation using PyTorch

Installation

conda create -n YOLO python=3.10.10
conda activate YOLO
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install opencv-python
pip install PyYAML
pip install tqdm

Train

  • Configure your dataset path in main.py for training
  • Run bash main.sh $ --train --train-dir <path_to_train_dir> --val-dir <path_to_val_dir> --test-dir <path_to_test_dir> for training, $ is number of GPUs

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test --train-dir <path_to_train_dir> --val-dir <path_to_val_dir> --test-dir <path_to_test_dir> for testing

Results

Version Epochs Box mAP Download
v11_n 600 38.6 Model
v11_n* - 39.2 Model
v11_s* - 46.5 Model
v11_m* - 51.2 Model
v11_l* - 53.0 Model
v11_x* - 54.3 Model
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.386
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.415
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.196
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.420
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.569
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.321
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.533
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.588
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.646
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.777
  • * means that it is from original repository, see reference
  • In the official YOLOv11 code, mask annotation information is used, which leads to higher performance

Dataset structure

├── COCO 
    ├── images
        ├── train2017
            ├── 1111.jpg
            ├── 2222.jpg
        ├── val2017
            ├── 1111.jpg
            ├── 2222.jpg
    ├── labels
        ├── train2017
            ├── 1111.txt
            ├── 2222.txt
        ├── val2017
            ├── 1111.txt
            ├── 2222.txt

Reference

About

YOLOv11 re-implementation using PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%
0