8000 GitHub - tflucas/ntu_viral_dataset
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

tflucas/ntu_viral_dataset

 
 

Repository files navigation

EEE_01 VIRAL SLAM SBS_01 VIRAL SLAM NBA_01 VIRAL SLAM

This site presents the datasets collected from our research Unmanned Aerial Vehicle (UAV) platform, featuring an extensive set of sensors:

  • Two 3D lidars
  • Two time-synchronized cameras
  • Multiple Inertial Measurement Units (IMUs)
  • Four Ultra-wideband (UWB) nodes on UAV, ranging to three anchor nodes.

The comprehensive sensor suite resembles that of an autonomous driving car, but features distinct and challenging characteristics of aerial operations. The flight tests are conducted in a variety of both indoor and outdoor conditions.

Citation

If you use some resource from this data suite, please cite it as

@article{nguyen2021ntuviral,
  title={NTU VIRAL: A Visual-Inertial-Ranging-Lidar dataset, from an aerial vehicle viewpoint},
  author={Nguyen, Thien-Minh and Yuan, Shenghai and Cao, Muqing and Lyu, Yang and Nguyen, Thien Hoang and Xie, Lihua},
  journal={Internationl Journal of Robotics Research (accepted, to appear)},
  year={2021}
}

[PDF]

Downloads

<style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-6ibf{border-color:inherit;font-size:18px;text-align:center;vertical-align:top} .tg .tg-v8dz{border-color:inherit;font-size:18px;text-align:left;vertical-align:top} .tg .tg-9m02{border-color:inherit;color:#00E;font-size:18px;text-align:center;text-decoration:underline;vertical-align:top} </style>
Name Link Size Duration Remark
eee_01 .zip 8.7 GB 398.7 s Collected at the School of EEE central carpark
eee_02 .zip 7.0 GB 321.1 s Collected at the School of EEE central carpark
eee_03 .zip 4.3 GB 181.4 s Collected at the School of EEE central carpark
nya_01 .zip 8.6 GB 396.3 s Collected at the School of Bio. Science's front square
nya_02 .zip 9.4 GB 428.7 s Collected at the School of Bio. Science's front square
nya_03 .zip 9.0 GB 411.2 s Collected at the School of Bio. Science's front square
sbs_01 .zip 7.8 GB 354.2 s Collected inside the Nanyang Auditorium
sbs_02 .zip 8.2 GB 373.3 s Collected inside the Nanyang Auditorium
sbs_03 .zip 8.5 GB 389.3 s Collected inside the Nanyang Auditorium
calib_stereo .zip 49 MB - Image pairs for intrinsic calibration
calib_stereo_imu .bag 0.96 GB 131.7 s Bag file for stereo camera - IMU calibration using Kalibr

(Alternatively, the files above can be downloaded from our NTU Data Repository page.)

Quick use

We have done some experiments of state-of-the-art methods on our the datasets. If you are seeking to do the same, please check out the following to get the work done quickly.

<style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top} .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top} </style>
Method Repository
Open-VINS https://github.com/brytsknguyen/open_vins
VINS-Fusion https://github.com/brytsknguyen/VINS-Fusion
VINS-Mono https://github.com/brytsknguyen/VINS-Mono
M-LOAM https://github.com/brytsknguyen/M-LOAM
LIO-SAM https://github.com/brytsknguyen/LIO-SAM
A-LOAM https://github.com/brytsknguyen/A-LOAM

Related works

The datasets were used in the following papers. Please checkout these works if you are interested.

Notes:

For more information on the sensors and how to use the dataset, please checkout the other sections.

For resources and other works of our group please checkout our github.

If you have some inquiry, please raise an issue on github.

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License and is intended for non-commercial academic use. If you are interested in using the dataset for commercial purposes please contact us.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • SCSS 79.7%
  • Liquid 13.7%
  • JavaScript 4.5%
  • Shell 1.2%
  • Other 0.9%
0