8000 GitHub - tanchongmin/strictjson: A Structured Output Framework for LLM Outputs
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

tanchongmin/strictjson

Repository files navigation

StrictJSON v6.1.1 - A Structured Output Framework for LLM Outputs

New Functionalities (see Tutorial - parse_yaml.ipynb)

Why YAML?

  • YAML is much more concise than JSON, and avoids a lot of problems faced with quotations and brackets
  • YAML also outputs code blocks much better with multi-line literal-block scalar (|), and the code following it can be totally free of any unnecessary backslash escape characters as it is not in a string
  • LLMs now are quite good at interpreting YAML than when this repo was first started

How it works

  • See Tutorial - parse_yaml.ipynb for more information.
  • Parses the LLM output as a YAML, and converts it to dict
  • Uses concise output_format to save tokens
  • Converts output_format into pydantic schema automatically, and uses pydantic to validate output
  • Able to process datatypes: int, float, str, bool, list, dict, date, datetime, time, UUID, Decimal
  • Able to process: None, Any, Union, Optional
  • Default datatype when not specified is Any
  • Error correction of up to num_tries times (default: 3)
  • More streamlined and works for multiple models such as:
    • Claude 3.5 Sonnet
    • Claude 3.7 Sonnet
    • gpt-o3-mini
    • gpt-o1-mini
    • gpt-4o-mini
    • gpt-4o
    • Meta Llama 3.3 70B
    • Meta Llama 3.2 90B (Note: Smaller versions of Llama 3.2 do not work well with YAML)
    • Meta Llama 3.1 70B (Note: Smaller versions of Llama 3.1 do not work well with YAML)
    • DeepSeek-V3
    • DeepSeek-R1
    • QwW 32B
    • Gemini 2.0 Flash
    • Gemini 2.0 Flash-Lite

Future Plans for YAML Parsing

  • Due to its versatility and better type checking with Pydantic, parse_yaml will now be the main focus for development
  • strict_json will still be around for legacy compatibility

Example LLM Definition

def llm(system_prompt: str, user_prompt: str, **kwargs) -> str:
    ''' Here, we use OpenAI for illustration, you can change it to your own local/remote LLM '''
    # ensure your LLM imports are all within this function
    from openai import OpenAI
    
    # define your own LLM here
    client = OpenAI()
    response = client.chat.completions.create(
        model='gpt-4o-mini',
        temperature = 0,
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
    )
    return response.choices[0].message.content

Example Usage

parse_yaml(system_prompt = "Give me 5 names on a topic", 
           user_prompt = "weather",
           output_format = {"Names": "Great sounding names, List[str]",
                            "Meanings": "Name and meaning, dict", 
                            "Chinese Meanings": "Name and meaning in chinese, dict",
                            "Lucky Name or Number": "List[Union[int, str]]",
                            "Code": "Python code to generate 5 names"},
           llm = llm)

Example Output

{'Names': ['Aurora', 'Zephyr', 'Nimbus', 'Solstice', 'Tempest'],
 'Meanings': {'Aurora': 'Dawn',
  'Zephyr': 'Gentle breeze',
  'Nimbus': 'Rain cloud',
  'Solstice': 'Sun standing still',
  'Tempest': 'Violent storm'},
 'Chinese Meanings': {'Aurora': '曙光',
  'Zephyr': '微风',
  'Nimbus': '雨云',
  'Solstice': '至日',
  'Tempest': '暴风'},
 'Lucky Name or Number': [7, '13', 3, 'Lucky', 21],
 'Code': 'import random\n\ndef generate_weather_names():\n    names = ["Aurora", "Zephyr", "Nimbus", "Solstice", "Tempest"]\n    return random.sample(names, 5)\n\nprint(generate_weather_names())'}

(Optional) Easy interface with Structured Output parser from your favourite LLM provider!

In the rare event parse_yaml fails to generate valid YAML for your use case, you can also use the Structured Output parser directly from your favourite LLM provider.

Example LLM Definition to use Structured Outputs natively from LLM provider

def llm(system_prompt: str, user_prompt: str, **kwargs) -> str:
    ''' Here, we use OpenAI for illustration, you can change it to your own LLM '''
    # ensure your LLM imports are all within this function
    from openai import OpenAI

    client = OpenAI()
    params = {
    "model": "gpt-4o-mini",
    "temperature": 0,
    "messages": [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]
    }
    
    # Only add 'response_format' if a pydantic_model is provided.
    if kwargs.get("pydantic_model") is not None:
        params["response_format"] = kwargs["pydantic_model"]

        print("For debugging purposes, this is the json schema for the Pydantic Model:")
        print(kwargs["pydantic_model"].model_json_schema())
    
    response = client.beta.chat.completions.parse(**params)
    return response.choices[0].message.content

Method 1: Using the pydantic model automatically generated via output_format

parse_yaml(system_prompt = "You are a helpful assistent",
    user_prompt = "Generate a birthday event for Alex",
    output_format = {"name": "str",
                     "date": "str",
                     "participants": "only male names, list[str]"},
                     llm = llm)

Method 2: Using the pydantic model specified in parse_yaml input

from pydantic import BaseModel, Field

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str] = Field(..., description = "only male names")

parse_yaml(system_prompt = "You are a helpful assistent",
    user_prompt = "Generate a birthday event for Alex", 
    pydantic_model = CalendarEvent,
    llm = llm)

For Agentic Framework, do check out AgentJo (the official Agentic Framework building on StrictJSON). This will make the StrictJSON 8000 repo neater and this github will focus on using StrictJSON for LLM Output Parsing


How do I use this?

  1. Download package via command line pip install strictjson
  2. Import the required functions from strictjson

Tutorials and Community Support

Base Functionalities (see Tutorial - strict_json.ipynb)

  • Ensures LLM outputs into a dictionary based on a JSON format (HUGE: Nested lists and dictionaries now supported)
  • Works for JSON outputs with multiple ' or " or { or } or \ or unmatched braces/brackets that may break a json.loads()
  • Supports int, float, str, dict, list, array, code, Dict[], List[], Enum[], bool type forcing with LLM-based error correction, as well as LLM-based error correction using type: ensure <restriction>, and (advanced) custom user checks using custom_checks
  • Easy construction of LLM-based functions using Function (Note: renamed from strict_function to keep in line with naming convention of capitalised class groups. strict_function still works for legacy support.)
  • Easy integration with OpenAI JSON Mode by setting openai_json_mode = True
  • Exposing of llm variable for strict_json and Function for easy use of self-defined LLMs
  • AsyncFunction and strict_json_async for async (and faster) processing

How does it work?

  • Extract JSON values as a string using a special regex (add delimiters to key to make ###key###) to split keys and values. (New!) Also works for nested datatypes by splitting recursively.
  • Uses ast.literal_eval to best match the extracted output value to a literal (e.g. int, string, dict).
  • Ensures that all JSON fields are output by LLM, with optional type checking, if not it will feed in error message to LLM to iteratively correct its generation (default: 3 tries)

Features:

1. Basic Generation

  • system_prompt: Write in whatever you want the LLM to become. "You are a <purpose in life>"
  • user_prompt: The user input. Later, when we use it as a function, this is the function input
  • output_format: JSON of output variables in a dictionary, with the key as the output key, and the value as the output description
    • The output keys will be preserved exactly, while the LLM will generate content to match the description of the value as best as possible
  • llm: The llm you want to use. Takes in system_prompt and user_prompt and outputs the LLM-generated string

Example Usage

res = strict_json(system_prompt = 'You are a classifier',
                    user_prompt = 'It is a beautiful and sunny day',
                    output_format = {'Sentiment': 'Type of Sentiment',
                                    'Adjectives': 'Array of adjectives',
                                    'Words': 'Number of words'},
                    llm = llm)
                                    
print(res)

Example Output

{'Sentiment': 'Positive', 'Adjectives': ['beautiful', 'sunny'], 'Words': 7}

2. Advanced Generation

  • More advanced demonstration involving code that would typically break json.loads()

Example Usage

res = strict_json(system_prompt = 'You are a code generator, generating code to fulfil a task',
                    user_prompt = 'Given array p, output a function named func_sum to return its sum',
                    output_format = {'Elaboration': 'How you would do it',
                                     'C': 'Code',
                                    'Python': 'Code'},
                    llm = llm)
                                    
print(res)

Example Output

{'Elaboration': 'Use a loop to iterate through each element in the array and add it to a running total.',

'C': 'int func_sum(int p[], int size) {\n int sum = 0;\n for (int i = 0; i < size; i++) {\n sum += p[i];\n }\n return sum;\n}',

'Python': 'def func_sum(p):\n sum = 0\n for num in p:\n sum += num\n return sum'}

3. Type forcing output variables

  • Generally, strict_json will infer the data type automatically for you for the output fields
  • However, if you would like very specific data types, you can do data forcing using type: <data_type> at the last part of the output field description
  • <data_type> must be of the form int, float, str, dict, list, array, code, Dict[], List[], Array[], Enum[], bool for type checking to work
  • code removes all unicode escape characters that might interfere with normal code running
  • The Enum and List are not case sensitive, so enum and list works just as well
  • For Enum[list_of_category_names], it is best to give an "Other" category in case the LLM fails to classify correctly with the other options.
  • If list or List[] is not formatted correctly in LLM's output, we will correct it by asking the LLM to list out the elements line by line
  • For dict, we can further check whether keys are present using Dict[list_of_key_names]
  • Other types will first be forced by rule-based conversion, any further errors will be fed into LLM's error feedback mechanism
  • If <data_type> is not the specified data types, it can still be useful to shape the output for the LLM. However, no type checking will be done.
  • Note: LLM understands the word Array better than List since Array is the official JSON object type, so in the backend, any type with the word List will be converted to Array.

LLM-based checks

  • If you would like the LLM to ensure that the type is being met, use type: ensure <requirement>
  • This will run a LLM to check if the requirement is met. If requirement is not met, the LLM will generate what needs to be done to meet the requirement, which will be fed into the error-correcting loop of strict_json

Example Usage 1

res = strict_json(system_prompt = 'You are a classifier',
                    user_prompt = 'It is a beautiful and sunny day',
                    output_format = {'Sentiment': 'Type of Sentiment, type: Enum["Pos", "Neg", "Other"]',
                                    'Adjectives': 'Array of adjectives, type: List[str]',
                                    'Words': 'Number of words, type: int',
                                    'In English': 'Whether sentence is in English, type: bool'},
                  llm = llm)
                                    
print(res)

Example Output 1

{'Sentiment': 'Pos', 'Adjectives': ['beautiful', 'sunny'], 'Words': 7, 'In English': True}

Example Usage 2

res = strict_json(system_prompt = 'You are an expert at organising birthday parties',
                    user_prompt = 'Give me some information on how to organise a birthday',
                    output_format = {'Famous Quote about Age': 'type: ensure quote contains the word age',
                                    'Lucky draw numbers': '3 numbers from 1-50, type: List[int]',
                                    'Sample venues': 'Describe two venues, type: List[Dict["Venue", "Description"]]'},
                    llm = llm)

print(res)

Example Output 2

Using LLM to check "The secret of staying young is to live honestly, eat slowly, and lie about your age. - Lucille Ball" to see if it adheres to "quote contains the word age" Requirement Met: True

{'Famous Quote about Age': 'The secret of staying young is to live honestly, eat slowly, and lie about your age. - Lucille Ball', 'Lucky draw numbers': [7, 21, 35],

'Sample venues': [{'Venue': 'Beachside Resort', 'Description': 'A beautiful resort with stunning views of the beach. Perfect for a summer birthday party.'}, {'Venue': 'Indoor Trampoline Park', 'Description': 'An exciting venue with trampolines and fun activities. Ideal for an active and energetic birthday celebration.'}]}

4. Integrating with OpenAI JSON Mode

  • If you want to use the OpenAI JSON Mode, you can simply add in openai_json_mode = True and set model = 'gpt-4-1106-preview' or model = 'gpt-3.5-turbo-1106' in strict_json or Function
  • We will set model to gpt-3.5-turbo-1106 by default if you provide an invalid model
  • This does not work with the llm variable
  • Note that type checking does not work with OpenAI JSON Mode

Example Usage

res = strict_json(system_prompt = 'You are a classifier',
                    user_prompt = 'It is a beautiful and sunny day',
                    output_format = {'Sentiment': 'Type of Sentiment',
                                    'Adjectives': 'Array of adjectives',
                                    'Words': 'Number of words'},
                    model = 'gpt-3.5-turbo-1106' # Set the model
                    openai_json_mode = True) # Toggle this to True
                                    
print(res)

Example Output

{'Sentiment': 'positive', 'Adjectives': ['beautiful', 'sunny'], 'Words': 6}

5. Nested Outputs

  • StrictJSON supports nested outputs like nested lists and dictionaries

Example Input

res = strict_json(system_prompt = 'You are a classifier',
                    user_prompt = 'It is a beautiful and sunny day',
                    output_format = {'Sentiment': ['Type of Sentiment', 
                                                   'Strength of Sentiment, type: Enum[1, 2, 3, 4, 5]'],
                                    'Adjectives': "Name and Description as separate keys, type: List[Dict['Name', 'Description']]",
                                    'Words': {
                                        'Number of words': 'Word count', 
                                        'Language': {
                                              'English': 'Whether it is English, type: bool',
                                              'Chinese': 'Whether it is Chinese, type: bool'
                                                  },
                                        'Proper Words': 'Whether the words are proper in the native language, type: bool'
                                        }
                                    },
                 llm = llm)

print(res)

Example Output

{'Sentiment': ['Positive', 3],

'Adjectives': [{'Name': 'beautiful', 'Description': 'pleasing to the senses'}, {'Name': 'sunny', 'Description': 'filled with sunshine'}],

'Words':

{'Number of words': 6,

'Language': {'English': True, 'Chinese': False},

'Proper Words': True}

}

6. Return as JSON

  • By default, strict_json returns a Python Dictionary
  • If needed to parse as JSON, simply set return_as_json=True
  • By default, this is set to False in order to return a Python Dictionry

7. Async Mode

  • AsyncFunction and strict_json_async

    • These are the async equivalents of Function and strict_json
    • You will need to define an LLM that can operate in async mode
    • Everything is the same as the sync version of the functions, except you use the await keyword when calling AsyncFunction and strict_json_async
  • Using Async can help do parallel processes simulataneously, resulting in a much faster workflow

Example LLM in Async Mode

async def llm_async(system_prompt: str, user_prompt: str):
    ''' Here, we use OpenAI for illustration, you can change it to your own LLM '''
    # ensure your LLM imports are all within this function
    from openai import AsyncOpenAI
    
    # define your own LLM here
    client = AsyncOpenAI()
    response = await client.chat.completions.create(
        model='gpt-4o-mini',
        temperature = 0,
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
    )
    return response.choices[0].message.content

Example Input (strict_json_async)

res = await strict_json_async(system_prompt = 'You are a classifier',
                    user_prompt = 'It is a beautiful and sunny day',
                    output_format = {'Sentiment': 'Type of Sentiment',
                                    'Adjectives': 'Array of adjectives',
                                    'Words': 'Number of words'},
                                     llm = llm_async) # set this to your own LLM

print(res)

Example Output

{'Sentiment': 'Positive', 'Adjectives': ['beautiful', 'sunny'], 'Words': 7}

About

A Structured Output Framework for LLM Outputs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0