8000 GitHub - soochem/uda-impl: Re-implementation of "Unsupervised Data Augmentation for Consistency Training" (NIPS 2020)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

soochem/uda-impl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UDA Re-implementation

Please refer to original paper Unsupervised Data Augmentation for Consistency Training (NIPS 2020) and code google-research/uda.

Run code

bash train.sh 0
TASK="IMDB"

CUDA_VISIBLE_DEVICES=$1 python run_classifier.py \
    --data_dir "./data/${TASK}/" \
    --model_name_or_path bert-base-uncased \
    --output_dir "./output/tmp" \
    --num_train_steps 10000 \
    --learning_rate 2e-05 \
    --warmup_steps 1000 \
    --loss_weight 1.0 \
    --softmax_temp 0.85 \
    --tsa_mode 'linear' \
    --do_train \
    --do_eval \
    --eval_steps 100 \
    --save_steps 1000

Reproducing results

IMDB

Model # labeled samples (train) # unlabeled samples (train) # test samples Error rate (from paper) Error rate (re-implementation)
BERT 20 69972 25000 6.50 TBA
UDA 20 69972 25000 4.20 TBA

About

Re-implementation of "Unsupervised Data Augmentation for Consistency Training" (NIPS 2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0