8000 GitHub - shenjh0/PUF: This is the official implementation for paper "Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection".
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ PUF Public

This is the official implementation for paper "Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection".

License

Notifications You must be signed in to change notification settings

shenjh0/PUF

Repository files navigation

PUF

Official implementation for
Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection

Download

  1. LEVIR-AU: this dataset is based on LEVIR, and it is released in GoogleDrive: levir-au
  2. Pretrained model: backbone-resnet50, and put this file under the dir: ./pretrained/

How to use

1. Make the environment

pip install -r requirements.txt

2. Prepare the dataset stucture

{YOUR DATA ROOT}
├── A
│   ├── x.jpg
│   └── xx.jpg
│
├── B
│   ├── x.jpg
│   └── xx.jpg
│
└── label
    ├── x.jpg
    └── xx.jpg
-----------------------------------------------
# train/test files
corresponding split txt at: {YOUR PROJECT ROOT}/splits

3. Modify the config yaml

For example, use the LEVIR-AU dataset, then modify:

{YOUR PROJECT ROOT}/configs/levir_au.yaml

4. Start training

CUDA_VISIBLE_DEVICES=1 sh scripts/train_semi.sh 1 25000

Citation

To refer to this work, please cite

@ARTICLE{10621657,
  author={Shen, Jinhao and Zhang, Cong and Zhang, Mingwei and Li, Qiang and Wang, Qi},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection}, 
  year={2024},
  volume={62},
  number={},
  pages={1-13},
  keywords={Uncertainty;Remote sensing;Unified modeling language;Training;Imaging;Task analysis;Pipelines;Change detection (CD);remote sensing;semi-supervised learning;uncertainty},
  doi={10.1109/TGRS.2024.3437250}}

Acknowledgements

Thanks for the open source codes: SemiCD, FPA, Unimatch, RCL.

About

This is the official implementation for paper "Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0