--2025-05-22 14:00:20-- https://raw.githubusercontent.com/plotly/datasets/master/iris-data.csv Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 4757 (4.6K) [text/plain] Saving to: ‘iris-data.csv’
iris-data.csv 100%[===================>] 4.65K --.-KB/s in 0s
2025-05-22 14:00:20 (39.0 MB/s) - ‘iris-data.csv’ saved [4757/4757]
Would you like me to generate a complete .editorconfig that includes frontend/backend sections and GitHub workflow file handling?
This part of your code (assuming data contains a dictionary with known words, and graph is a NetworkX graph of word relationships):
generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated")
import networkx as nx import matplotlib.pyplot as plt from matplotlib_venn import venn3
data = { "words": { "apple": {"category": "Fruit", "color": "Red", "validated": True}, "banana": {"category": "Fruit", "color": "Yellow", "validated": True}, "orange": {"category": "Fruit", "color": "Orange", "validated": False}, "grape": {"category": "Fruit", "color": "Purple", "validated": True} }, "transformations": [ {"from": "apple", "to": "ApplePie", "type": "Baking"}, {"from": "banana", "to": "BananaBread", "type": "Baking"}, {"from": "orange", "to": "OrangeJuice", "type": "Juicing"}, {"from": "grape", "to": "grapefruit", "type": "Mutation"} ] }
graph = nx.DiGraph() for word, metadata in data["words"].items(): graph.add_node(word, **metadata) for transformation in data["transformations"]: to_word = transformation["to"] if to_word not in graph: graph.add_node(to_word, category="Generated", numeric=[ord(c) for c in to_word]) graph.add_edge(transformation["from"], transformation["to"], transformation=transformation["type"])
known_words = set(data["words"].keys()) generated_words = set(node for node, attr in graph.nodes(data=True) if attr.get("category") == "Generated") validated_words = {w for w in known_words if data["words"][w].get("validated", False)} # Handle missing "validated" key
venn3([known_words, generated_words, validated_words], ('Known', 'Generated', 'Validated')) plt.title("Known vs. Generated vs. Validated Words") plt.show()
missing_words = generated_words - known_words print("Generated words not in known words:", missing_words)