8000 GitHub - sailfish009/deeprank
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

sailfish009/deeprank

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepRank

DeepRank: Learning to Rank with Neural Networks for Recommendation

  • Run listwise DeepRank:

$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 5 --num_positive 2 --sample_time 2 --top_n 10 --lr 0.01 --path_model model

  • Run pairwise DeepRank:

$ python DeepRank.py --path datasets --data_name ml-100k/u.data --epoches 40 --batch_size 512 --user_factors 16 --item_factors 16 --layers [16,8] --reg 0.00001 --list_length 2 --num_positive 1 --sample_time 4 --top_n 10 --lr 0.01 --path_model model

Parameter description:

  • path:Input data path.
  • data_name:Name of dataset
  • epoches:Number of epoches.
  • batch_size:Batch size.
  • user_factors:Embedding size of users.
  • item_factors: Embedding size of items.
  • layers:Size of each layer. Note that the first hidden layer is the interaction layer.
  • reg: Regularization for user and item embeddings.
  • list_length: Length of list for training. In pairwise DeepRank list_length=2; in listwise DeepRank list_length>2.
  • num_positive: Number of positive instances in training list. In pairwise DeepRank num_positive=1;
  • sample_time: Time of sample from instances.
  • top_n: Number of top_n list for recommendation.
  • lr: Learning rate.
  • path_model: Output path for saving pre_trained model.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.7%
  • Perl 3.3%
  • Shell 3.0%
0