8000 GitHub - sx-zhang/SGM: Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation (CVPR2024)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ SGM Public

Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation (CVPR2024)

License

Notifications You must be signed in to change notification settings

sx-zhang/SGM

Repository files navigation

Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation

Setup

  • Clone the repository and move into the top-level directory cd SGM
  • Create conda environment. conda env create -f environment.yml
  • Activate the environment. conda activate sgm
  • We provide pre-trained model of sgm and frontier_prediction. For evaluation, you can download the sgm model to $SGM_ROOT/pretrained_models/frontier.ckpt and the frontier_prediction model to $SGM_ROOT/pretrained_models/MAE-checkpoint-199.pth.

Dataset

We use a modified version of the Gibson ObjectNav evaluation setup from SemExp.

  1. Download the Gibson ObjectNav dataset to $SGM_ROOT/data/datasets/objectnav/gibson.
    cd $SGM_ROOT/data/datasets/objectnav
    wget -O gibson_objectnav_episodes.tar.gz https://utexas.box.com/shared/static/tss7udt3ralioalb6eskj3z3spuvwz7v.gz
    tar -xvzf gibson_objectnav_episodes.tar.gz && rm gibson_objectnav_episodes.tar.gz
    
  2. Download the image segmentation model [URL] to $SGM_ROOT/pretrained_models.
  3. To visualize episodes with the semantic map and potential function predictions, add the arguments --print_images 1 --num_pf_maps 3 in the evaluation script.

The data folder should look like this

  data/ 
    ├── datasets/objectnav/gibdon/v1.1
        ├── train/
        │   ├── content/
        │   ├── train_info.pbz2
        │   └── train.json.gz
        ├── val/
        │   ├── content/
        │   ├── val_info.pbz2
        │   └── val.json.gz
    ├── scene_datasets/
        ├── gibson_semantic/
            ├── Allensville_semantic.ply
            ├── Allensville.glb
            ├── Allensville.ids
            ├── Allensville.navmesh
            ├── Allensville.scn
            ├── ...
    ├── semantic_maps/
        ├── gibson/semantic_maps
            ├── semmap_GT_info.json
            ├── Allensville_0.png
            ├── Allensville.h5
            ├── ...

Evaluation

sh experiment_scripts/gibson/eval_sgm.sh

Training

Download the training_gibson dataset to $SGM_ROOT/SGM_train/mapdata/gibson.

  1. Create conda environment. conda env create -f SGM_train/environment.yml
  2. Activate the environment. conda activate sgm_train
  3. sh SGM_train/run_train.sh

About

Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation (CVPR2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0