8000 Example to demonstrate building a custom endpoint plugin by namannandan · Pull Request #3306 · pytorch/serve · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Example to demonstrate building a custom endpoint plugin #3306

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions examples/custom_endpoint_plugin/ModelReady.java
< 8000 tr data-hunk="ec40738dbf3c40d06f2aff43f9e27fb33fd61c9e6b4ca2821f9d0ae679ada9b1" class="show-top-border">
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
package org.pytorch.serve.plugins.endpoint;

import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Map;
import org.pytorch.serve.servingsdk.Context;
import org.pytorch.serve.servingsdk.Model;
import org.pytorch.serve.servingsdk.ModelServerEndpoint;
import org.pytorch.serve.servingsdk.Worker;
import org.pytorch.serve.servingsdk.annotations.Endpoint;
import org.pytorch.serve.servingsdk.annotations.helpers.EndpointTypes;
import org.pytorch.serve.servingsdk.http.Request;
import org.pytorch.serve.servingsdk.http.Response;

@Endpoint(
urlPattern = "model-ready",
endpointType = EndpointTypes.INFERENCE,
description = "Endpoint indicating registered model/s ready to serve inference requests")
public class ModelReady extends ModelServerEndpoint {
private boolean modelsLoaded(Context ctx) {
Map<String, Model> modelMap = ctx.getModels();

if (modelMap.isEmpty()) {
return false;
}

for (Map.Entry<String, Model> entry : modelMap.entrySet()) {
boolean workerReady = false;
for (Worker w : entry.getValue().getModelWorkers()) {
if (w.isRunning()) {
workerReady = true;
break;
}
}
if (!workerReady) {
return false;
}
}
return true;
}

@Override
public void doGet(Request req, Response rsp, Context ctx) throws IOException {
if (modelsLoaded(ctx)) {
rsp.setStatus(200, "Model/s ready");
rsp.getOutputStream()
.write(
"{\n\t\"Status\": \"Model/s ready\"\n}\n"
.getBytes(StandardCharsets.UTF_8));
} else {
rsp.setStatus(503, "Model/s not ready");
rsp.getOutputStream()
.write(
"{\n\t\"Status\": \"Model/s not ready\"\n}\n"
.getBytes(StandardCharsets.UTF_8));
}
}
}
145 changes: 145 additions & 0 deletions examples/custom_endpoint_plugin/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
# Torchserve custom endpoint plugin

In this example, we demonstrate how to create a custom HTTP API endpoint plugin for TorchServe. Endpoint plugins enable us to dynamically add custom functionality to TorchServe at start time, without having to rebuild TorchServe. For more details on endpoint plugins and TorchServe SDK, refer to the following links:
- [Plugins Readme](https://github.com/pytorch/serve/tree/master/plugins)
- [TorchServe SDK source](https://github.com/pytorch/serve/tree/master/serving-sdk)

In this example, we will build an endpoint plugin that implements the functionality of a HTTP API endpoint that reports the readiness of models registered on TorchServe to serve inference requests.

Run the commands given in the following steps from the root directory of the repository. For example, if you cloned the repository into `/home/my_path/serve`, run the steps from `/home/my_path/serve`

## Steps

- Step 1: Install the necessary dependencies for TorchServe development environment

```bash
$ python ts_scripts/install_dependencies.py --environment=dev
```

- Step 2: Copy [ModelReady.java](ModelReady.java) to the endpoint plugins directory

```bash
$ cp examples/custom_endpoint_plugin/ModelReady.java plugins/endpoints/src/main/java/org/pytorch/serve/plugins/endpoint
```
For reference on implemeting your own custom plugin, review the utilization of the [TorchServe SDK API](https://github.com/pytorch/serve/tree/master/serving-sdk/src/main/java/org/pytorch/serve/servingsdk) and its corresponding [implementation](https://github.com/pytorch/serve/tree/master/frontend/server/src/main/java/org/pytorch/serve/servingsdk/impl) in [ModelReady.java](ModelReady.java).

- Step 3: Copy [org.pytorch.serve.servingsdk.ModelServerEndpoint](org.pytorch.serve.servingsdk.ModelServerEndpoint) to the plugins service provider configuration directory

```bash
$ cp examples/custom_endpoint_plugin/org.pytorch.serve.servingsdk.ModelServerEndpoint plugins/endpoints/src/main/resources/META-INF/services
```

- Step 4: Update the [endpoint plugins build script](../../plugins/endpoints/build.gradle) to only include the required plugins in the JAR

```bash
.....
.....
/**
* By default, include all endpoint plugins in the JAR.
* In order to build a custom JAR with specific endpoint plugins, specify the required paths.
* For example:
* include "org/pytorch/serve/plugins/endpoint/Ping*"
* include "org/pytorch/serve/plugins/endpoint/ExecutionParameters*"
*/
include "org/pytorch/serve/plugins/endpoint/ModelReady*"
.....
.....
```

- Step 5: Build the custom endpoint plugin

```bash
$ cd plugins
$ ./gradlew clean build
$ cd ..
```

- Step 6: Create two example model archives to test the plugin with

```bash
$ mkdir -p model_store
$ torch-model-archiver --model-name mnist --version 1.0 --model-file examples/image_classifier/mnist/mnist.py --serialized-file examples/image_classifier/mnist/mnist_cnn.pt --handler examples/image_classifier/mnist/mnist_handler.py
$ mv mnist.mar ./model_store
```

```bash
$ wget https://download.pytorch.org/models/resnet18-f37072fd.pth
$ torch-model-archiver --model-name resnet-18 --version 1.0 --model-file ./examples/image_classifier/resnet_18/model.py --serialized-file resnet18-f37072fd.pth --handler image_classifier --extra-files ./examples/image_classifier/index_to_name.json
$ mv resnet-18.mar ./model_store
```

- Step 7: Start Torchserve with the appropriate plugins path containing the JAR we just built.
The plugin JAR will be contained in the `plugins/endpoints/build/libs` directory. For Ex: `plugins/endpoints/build/libs/endpoints-1.0.jar`
```bash
$ torchserve --ncs --start --model-store ./model_store --disable-token-auth --enable-model-api --plugins-path ./plugins/endpoints/build/libs
```

- Step 8: Register the models and test the custom endpoint

```bash
$ curl -X POST "http://localhost:8081/models?url=mnist.mar"
{
"status": "Model \"mnist\" Version: 1.0 registered with 0 initial workers. Use scale workers API to add workers for the model."
}

$ curl -X POST "http://localhost:8081/models?url=resnet-18.mar"
{
"status": "Model \"resnet-18\" Version: 1.0 registered with 0 initial workers. Use scale workers API to add workers for the model."
}
```

```bash
$ curl -X GET http://localhost:8080/model-ready
{
"Status": "Model/s not ready"
}
```

The `model-ready` endpoint reports that the models are not ready since there are no workers that have loaded the models and ready to serve inference requests.

- Step 9: Scale up workers for one of the models and test the custom endpoint

```bash
$ curl -X PUT "http://localhost:8081/models/mnist?min_worker=1&synchronous=true"
{
"status": "Workers scaled to 1 for model: mnist"
}
```

```bash
$ curl -X GET http://localhost:8080/model-ready
{
"Status": "Model/s not ready"
}
```

The `model-ready` endpoint reports that the models are not ready since not all registered models have atleast one worker ready to serve inference requests.

- Step 10: Scale up workers for both models and test the custom endpoint

```bash
$ curl -X PUT "http://localhost:8081/models/mnist?min_worker=1&synchronous=true"
{
"status": "Workers scaled to 1 for model: mnist"
}

$ curl -X PUT "http://localhost:8081/models/resnet-18?min_worker=1&synchronous=true"
{
"status": "Workers scaled to 1 for model: resnet-18"
}
```

```bash
$ curl -X GET http://localhost:8080/model-ready
{
"Status": "Model/s ready"
}
```

The `model-ready` endpoint reports that the models are now ready since there is atleast one worker per registered model that is ready to serve inference requests.

- Step 11: Stop TorchServe
```bash
$ torchserve --stop
```

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
org.pytorch.serve.plugins.endpoint.ModelReady
11 changes: 9 additions & 2 deletions plugins/endpoints/build.gradle
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,15 @@ jar {
exclude "META-INF/MANIFEST*"
exclude "META-INF//LICENSE*"
exclude "META-INF//NOTICE*"
exclude "org/pytorch/serve/plugins/endpoint/ExecutionParameters*" // Comment out if ExecutionParameter endpoint is needed
exclude "org/pytorch/serve/plugins/endpoint/Ping*" // Comment out if Ping endpoint is needed
include "META-INF/services/*"
/**
* By default, include all endpoint plugins in the JAR.
* In order to build a custom JAR with specific endpoint plugins, specify the required paths.
* For example:
* include "org/pytorch/serve/plugins/endpoint/Ping*"
* include "org/pytorch/serve/plugins/endpoint/ExecutionParameters*"
*/
include "org/pytorch/serve/plugins/endpoint/*"
}

java {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
org.pytorch.serve.plugins.endpoint.ExecutionParameters
org.pytorch.serve.plugins.endpoint.Ping
Loading
0