8000 [float8 moe training] Add TP support by danielvegamyhre · Pull Request #2425 · pytorch/ao · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

[float8 moe training] Add TP support #2425

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions test/prototype/moe_training/test_fsdp.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,16 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
######################################################################
#
# To run these unit tests, use the following command:
#
# torchrun --nproc_per_node=${NUM_GPUS} -m pytest test_fsdp.py
#
#######################################################################

import copy
import os

Expand Down
219 changes: 219 additions & 0 deletions test/prototype/moe_training/test_tp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
######################################################################
#
# To run these unit tests, use the following command:
#
# torchrun --nproc_per_node=${NUM_GPUS} -m pytest test_tp.py
#
#######################################################################

import copy
import os

import pytest
import torch
from torch import distributed as dist
from torch import nn
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.nn import functional as F

# this feature requires CUDA and SM89+
if not torch.cuda.is_available() or torch.cuda.get_device_capability() < (8, 9):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit we have some helpers for this in ao/utils

pytest.skip(
"CUDA not available or compute capability < 8.9", allow_module_level=True
)

from torchao.float8.float8_utils import compute_error
from torchao.prototype.moe_training.conversion_utils import MoETrainingConfig
from torchao.prototype.moe_training.tensor import ScaledGroupedMMTensor
from torchao.quantization.quant_api import quantize_

# this test requires torchtitan
try:
from torchtitan.experiments.llama4.infra.parallelize import apply_moe_tp
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we should add this test to test_float8 ->

from torchtitan.experiments.llama4.model.args import TransformerModelArgs
from torchtitan.experiments.llama4.model.moe import MoE
except ImportError:
import warnings

warnings.warn("torchtitan not installed, skipping MoE tests.")
pytest.skip(allow_module_level=True)


@pytest.mark.parametrize(
"target_fqns",
[
["experts"],
["experts,shared_expert"],
],
)
def test_moe_float8_training_tp_sp(target_fqns: list[str]):
assert torch.cuda.is_available()

# setup distributed for fsdp
mesh = setup_distributed()

# define model args
model_args = TransformerModelArgs(
moe_enabled=True,
num_experts=8,
dim=256,
vocab_size=1024,
)
init_std = 0.02
device = torch.device("cuda")

# reference bf16 MoE
ref_model = MoE(model_args).to(torch.bfloat16).cuda()
torch.manual_seed(1)
ref_model.init_weights(init_std, device)

# target MoE for testing conversion
model = copy.deepcopy(ref_model)

# assert starting params are identical for both models
for param1, param2 in zip(model.parameters(), ref_model.parameters()):
assert torch.equal(param1, param2)

# convert MoE to float8 training
def moe_module_filter_fn(mod: nn.Module, cur_fqn: str) -> bool:
for target_fqn in target_fqns:
if target_fqn in cur_fqn:
return True
return False

# quantize test model
config = MoETrainingConfig()
quantize_(model, config=config, filter_fn=moe_module_filter_fn)

# validate that only the experts were converted
_validate_model_conversion(
model,
target_fqns=target_fqns,
)

# apply TP
apply_moe_tp(model, mesh)
apply_moe_tp(ref_model, mesh)

# inputs
batch, seq, dim = 8, 2048, 256
ref_x = torch.randn(
batch, seq, dim, dtype=torch.bfloat16, requires_grad=True, device=device
)
x = ref_x.detach().clone().requires_grad_(True)

# forward pass
ref_out = ref_model(ref_x)
out = model(x)

# validate output
out_sqnr = compute_error(out, ref_out)
assert out_sqnr.item() >= 30.0, f"SQNR must be >= 30.0, got {out_sqnr.item()}."

# compute loss
labels = torch.ones_like(ref_out)
ref_loss = F.mse_loss(ref_out, labels)
out_loss = F.mse_loss(out, labels)

# backward pass
ref_loss.backward()
out_loss.backward()

# validate input gradient
input_grad_sqnr = compute_error(x.grad, ref_x.grad)
assert input_grad_sqnr.item() >= 30.0, (
f"SQNR must be >= 30.0, got {input_grad_sqnr.item()}."
)

# validate param gradients
for param1, param2 in zip(model.parameters(), ref_model.parameters()):
param_grad_sqnr = compute_error(param1.grad, param2.grad)
assert param_grad_sqnr.item() >= 25.0, (
f"SQNR must be >= 25.0, got {param_grad_sqnr.item()}."
)

dist.destroy_process_group()


def _validate_model_conversion(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

did I review another PR that had teh same util? if so maybe put into torchao.testing so we can reuse

root_module: nn.Module,
target_fqns: list[str],
):
def _recursive_validate(
module: nn.Module,
cur_fqn: str,
):
is_allowed_module = any([target_fqn in cur_fqn for target_fqn in target_fqns])

# check current module params
for param_name, param in module.named_parameters(recurse=False):
is_converted_type = isinstance(param, ScaledGroupedMMTensor)
if is_converted_type:
assert is_allowed_module, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)
if not is_allowed_module:
assert not is_converted_type, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)

# recursively check child modules
for child_name, child_module in module.named_children():
child_fqn = f"{cur_fqn}.{child_name}" if cur_fqn else child_name
_recursive_validate(child_module, child_fqn)

_recursive_validate(root_module, "")


def setup_distributed():
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group("nccl", rank=rank, world_size=world_size)
device_mesh = init_device_mesh("cuda", (world_size,))
# seed must be the same in all processes
torch.manual_seed(1)
torch.cuda.set_device(rank)
return device_mesh


def apply_moe_tp(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

6D47

this is always specific to module structure e.g. the fqn's right?

model: nn.Module,
tp_mesh: DeviceMesh,
):
# base on llama4 MoE TP implementation here: https://github.com/pytorch/torchtitan/blob/d9cc6b4df341eec27768b5ab9cead87ef595dbc2/torchtitan/experiments/llama4/infra/parallelize.py#L147C1-L180C10
from torch.distributed.tensor import Partial, Replicate, Shard
from torch.distributed.tensor.parallel import (
PrepareModuleInputOutput,
parallelize_module,
)
from torchtitan.experiments.llama4.infra.expert_parallel import (
NoParallel,
TensorParallel,
)

moe_layer_plan = {
# input / output sharding on the seqlen dim
# all-gather for input, reduce-scatter for output
"moe": PrepareModuleInputOutput(
input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),
use_local_input=True,
output_layouts=(Partial(),),
desired_output_layouts=(Shard(1),),
),
# replicate computation for the router
"moe.router.gate": NoParallel(),
# input Replicate, output Partial
"moe.experts": TensorParallel(output_layout=Partial()),
"moe.shared_expert": TensorParallel(output_layout=Partial()),
}
parallelize_module(
module=model,
device_mesh=tp_mesh,
parallelize_plan=moe_layer_plan,
)
17 changes: 14 additions & 3 deletions torchao/prototype/moe_training/conversion_utils.py
F438
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Callable, Optional

from torch import nn
Expand All @@ -8,6 +14,8 @@
register_quantize_module_handler,
)

logger: logging.Logger = logging.getLogger(__name__)
Copy link
Contributor
@drisspg drisspg Jun 26, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

side note, we should setup better logging in torchao
alas: https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library

just getting the root logger going w/ null handler



class MoETrainingConfig(AOBaseConfig):
"""
Expand Down Expand Up @@ -76,7 +84,7 @@ def _swap_params(
f"Does not support a root nn.Parameter with children: {module}"
)
if not isinstance(module.data, ScaledGroupedMMTensor):
new_data = ScaledGroupedMMTensor(module.data)
new_data = ScaledGroupedMMTensor(module.data, module.data.dtype)
return nn.Parameter(new_data, requires_grad=module.requires_grad)
return module

Expand All @@ -102,10 +110,13 @@ def post_order_traversal(
for param_name, param in module.named_parameters(recurse=False):
if not isinstance(param.data, ScaledGroupedMMTensor):
new_param = nn.Parameter(
ScaledGroupedMMTensor(param), requires_grad=param.requires_grad
ScaledGroupedMMTensor(param.data, param.data.dtype),
requires_grad=param.requires_grad,
)
setattr(module, param_name, new_param)
print(f"Swapped {cur_fqn}.{param_name} to ScaledGroupedMMTensor")
logger.info(
f"Swapped {cur_fqn}.{param_name} to ScaledGroupedMMTensor"
)

post_order_traversal(root_module)
return root_module
31 changes: 17 additions & 14 deletions torchao/prototype/moe_training/scaled_grouped_mm.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.

import logging
from typing import Optional

import torch
Expand All @@ -18,11 +19,13 @@
_is_column_major,
)

logger: logging.Logger = logging.getLogger(__name__)


def _scaled_grouped_mm(
A: torch.Tensor,
B_t: torch.Tensor,
offs: torch.Tensor,
offs: Optional[torch.Tensor] = None,
out_dtype: Optional[torch.dtype] = torch.bfloat16,
) -> torch.Tensor:
"""
Expand All @@ -36,8 +39,8 @@ def _scaled_grouped_mm(
and in column-major memory layout.
offs (int32 torch.Tensor): The offsets to use to mark the starting index of each group along dim0 of the A tensor.
out_dtype (Optional[torch.dtype]): The dtype of the output tensor. Currently only torch.bfloat16 is supported.
use_triton_for_per_group_scales (bool): Whether to use custom triton kernels to compute per-group scales. Default is True.
"""
logger.info("Using differentiable _scaled_grouped_mm")
return _Float8GroupedMM.apply(
A,
B_t,
Expand All @@ -54,12 +57,11 @@ def forward(
ctx,
A: torch.Tensor,
B_t: torch.Tensor,
offs: torch.Tensor,
offs: Optional[torch.Tensor] = None,
out_dtype: Optional[torch.dtype] = torch.bfloat16,
use_triton_for_per_group_scales: bool = True,
) -> torch.Tensor:
# torchao _scaled_grouped_mm only supports A=2D, B=3D.
assert A.ndim == 2, "A must be 2D"
# torchao _scaled_grouped_mm only supports A=2D|3D and B=3D.
assert A.ndim == 2 or A.ndim == 3, "A must be 2D or 3D"
assert B_t.ndim == 3, "B must be 3D"

assert A.size(-1) % 16 == 0, (
Expand All @@ -76,7 +78,6 @@ def forward(
assert B_t.dtype == torch.float32 or B_t.dtype == torch.bfloat16, (
"B must be float32 or bfloat16"
)
assert offs.dtype == torch.int32, "offs must be int32"

# Assert A and B dims are compatible for a scaled grouped GEMM.
assert A.size(-1) == B_t.size(-2), (
Expand Down Expand Up @@ -152,9 +153,11 @@ def forward(
return torch._scaled_grouped_mm(
A_fp8_row_major,
B_t_fp8_col_major,
A_scales.squeeze().reciprocal(),
B_t_scales.squeeze().reciprocal(),
offs,
# Squeeze A scales to: (B, S, 1) => (B, M), or (B*S, 1) => (B*S)
A_scales.squeeze(-1).reciprocal(),
# Squeeze B scales to: (B, 1, N) => (B, N)
B_t_scales.squeeze(1).reciprocal(),
offs=offs,
out_dtype=out_dtype,
use_fast_accum=True,
)
Expand Down Expand Up @@ -194,9 +197,9 @@ def backward(ctx, grad_output: torch.Tensor):
grad_A = torch._scaled_grouped_mm(
grad_output_fp8_row_major,
B_fp8_col_major,
grad_output_scales.squeeze().reciprocal(),
B_scales.squeeze().reciprocal(),
offs,
grad_output_scales.squeeze(-1).reciprocal(),
B_scales.squeeze(1).reciprocal(),
offs=offs,
out_dtype=out_dtype,
use_fast_accum=True,
)
Expand Down Expand Up @@ -241,7 +244,7 @@ def backward(ctx, grad_output: torch.Tensor):
A_fp8_col_major,
grad_output_t_scales.reciprocal(),
A_scales.reciprocal(),
offs,
offs=offs,
out_dtype=out_dtype,
use_fast_accum=True,
)
Expand Down
Loading
Loading
0