8000 GitHub - lliai/RepVGG
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

lliai/RepVGG

 
 

Folders and files

NameName
Last commit message
Last commit date
8000

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RepVGG: Making VGG-style ConvNets Great Again

This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet with a stack of 3x3 conv and ReLU!

The training code and pretrained models will be updated upon the announcement of arxiv preprint (in two days).

Star me if you are interested.

ImageNet training settings:

We trained for 120 epochs with cosine learning rate decay from 0.1 to 0. We used 8 GPUs, global batch size of 256, weight decay of 1e-4 (no weight decay on fc.bias, bn.weight and bn.bias), and the same simple data preprocssing as the PyTorch official example:

            trans = transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
            ])

Use like this:

train_model = create_RepVGG_A0(deploy=False)
train train_model ...
deploy_model = repvgg_convert(train_model, create_RepVGG_A0, save_path='repvgg_deploy.pth')

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0