8000 GitHub - linjianz/tensorflow_homographynet: A tensorflow implementation of Homographynet
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

linjianz/tensorflow_homographynet

< 8000 button type="button" aria-haspopup="true" aria-expanded="false" tabindex="0" aria-label="master branch" data-testid="anchor-button" class="Box-sc-g0xbh4-0 gMOVLe prc-Button-ButtonBase-c50BI overview-ref-selector width-full" data-loading="false" data-size="medium" data-variant="default" aria-describedby="branch-picker-repos-header-ref-selector-loading-announcement" id="branch-picker-repos-header-ref-selector">
 master

Repository files navigation

Homographynet

This is an implementation of the paper Deep Image Homography Estimation with tensorflow
网络参数下载地址 百度网盘

Dataset

ms-coco

dataset image numbers
train2014 82783
val2014 40504
test2014 40775

Program list

train_mycnn.py

Build the network according to the paper completely.
No need to pre-save the generated data, the program genetated the image pairs automatically.

test_mycnn.py

Test only one image a time, output the four-pair offsets predicted from HomographyNet.
Then use data_process.m to visulize the results.

train_net.py

Use existing cnn framework for training, something wrong v.

data_generation.py

If you like, just generate the training data.

Result

I test 200 images on test2014, Mean Corner Error = 12.6578 (image size is 320x240).
The original thesis is 9.2 (image size is 640x480). But I believe my result could be better.
good example:
1

my result Vs. the author's result on the same image

bad example:

About

A tensorflow implementation of Homographynet

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0