8000 GitHub - linnabrown/geiprs
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

linnabrown/geiprs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GEiPRS - A Fast and Powerful Machine Learning Method for Polygenic Risk Score Prediction by Leveraging Genotype-Environment Interactions

License: GPL-2

References:

  • Le Huang#, Wujuan Zhong#, Song Zhai, and Judong Shen. GEiPRS: A Fast and Powerful Machine Learning Method for Polygenic Risk Score Prediction by Leveraging Genotype-Environment Interactions.

Installation:

GEiPRS can be installed by running the following scripts in R. Notice that the installation of pgenlibr requires zstd(>=1.4.4). It can be built from source or simply available from conda, pip or brew.

library(devtools)

devtools::install_github("junyangq/glmnetPlus")
devtools::install_github("chrchang/plink-ng", subdir="/2.0/cindex")
devtools::install_github("chrchang/plink-ng", subdir="/2.0/pgenlibr")
devtools::install_github("dajmcdon/sparsegl")

# install GEiPRS
devtools::install_github("linnabrown/geiprs")

We assume the users already have PLINK 2.0. Otherwise it can be installed from https://www.cog-genomics.org/plink/2.0/.

Tutorial of using R package GEiPRS is available at vignettes/vignette.pdf and vignettes/vignette.html.

Acknowledgments

This package builds upon the snpnet package developed by Junyang Qian, Trevor Hastie, Yosuke Tanigawa, Ruilin Li, Manuel A Rivas, and Christopher Chang. We thank them for their contributions.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0