8000 GitHub - luoj-roger/chargrid2d
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

luoj-roger/chargrid2d

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Requirements

  • Python 3.6.5
  • Pytorch 1.2.0

To train model, first you need to run chargrid2d/dataloader_utils/generate_mask.py to generate data to train segmentation model from bounding box and text.

To use with SROIE dataset, we need to do labeling corresponding class for each box in the image. You can read the code in generate_masks.py file, which will call this function:

def __convert_data_sroie(self, label_json):
    std_out = []

    for item in label_json:
        for char in item['text']:
            if char not in self.__corpus__:
                self.__corpus__[char] = 1
            else:
                self.__corpus__[char] += 1

        std_out.append({
            'value': item['text'],
            'formal_key': item['class'],
            'key_type': 'value',
            'location': item['box']
        })

    return std_out

the input data in json file should be a list of dictionary with keys: text, class, box.

You could do the processing by using this (which was commented out in the main function):

mask_generator = MaskGenerator()
mask_generator.process(lbl_fol, img_fol, out_fol)
mask_generator.generate_mask('.')

Then you need to run train.py file to train the model.

If you have any questions, please create an issue.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0