8000 [TYPO FIX] Update README.md by cakiki · Pull Request #159 · krishnanlab/PecanPy · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

[TYPO FIX] Update README.md #159

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 4, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Learning low-dimensional representations (embeddings) of nodes in large graphs i

The details of implementation and the optimizations, along with benchmarks, are described in the application note [_PecanPy: a fast, efficient and parallelized Python implementation of node2vec_](https://doi.org/10.1093/bioinformatics/btab202), which is published in _Bioinformatics_. The benchmarking results presented in the preprint can be reproduced using the test scripts provided in the companion [benchmarks repo](https://github.com/krishnanlab/PecanPy_benchmarks).

**v2 update**: PecanPy is now equipped with _node2vec+_, which is a natural extension of _node2vec_ and handles weighted graph more effectively. For more information, see [*Accurately Modeling Biased Random Walks on Weighted Wraphs Using Node2vec+*](https://arxiv.org/abs/2109.08031). The datasets and test scripts for reproducing the presented results are available in the [node2vec+ benchmarks repo](https://github.com/krishnanlab/node2vecplus_benchmarks).
**v2 update**: PecanPy is now equipped with _node2vec+_, which is a natural extension of _node2vec_ and handles weighted graph more effectively. For more information, see [*Accurately Modeling Biased Random Walks on Weighted Graphs Using Node2vec+*](https://arxiv.org/abs/2109.08031). The datasets and test scripts for reproducing the presented results are available in the [node2vec+ benchmarks repo](https://github.com/krishnanlab/node2vecplus_benchmarks).

## Installation

Expand Down
0