8000 GitHub - komejisatori/SCOMatch: Code for SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning (ECCV2024)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

komejisatori/SCOMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCOMatch: Alleviating Overtrusting \in Open-set Semi-supervised Learning

This is an PyTorch implementation of SCOMatch (ECCV2024). This implementation is based on OpenMatch.

Requirements

  • python 3.6+
  • torch 1.10
  • torchvision 0.11.1
  • wandb 0.15.8
  • numpy
  • tqdm
  • sklearn

Usage

Dataset Preparation

This repository needs CIFAR10, CIFAR100, TinyImageNet and ImageNet-30 to train a model.

  • CIFAR10, CIFAR100 will be downloaded automatically.
  • Follow CSI to prepare ImageNet-30.
mkdir data
ln -s path_to_each_dataset ./data/.

## unzip filelist for imagenet_30 experiments.
unzip files.zip

All datasets are supposed to be under ./data.

Environment

Please follow OpenMatch to set up the python environments.

Train

Please use the scripts in ./scripts for the experiments on each dataset.

Acknowledgement

This repository depends a lot on Pytorch-FixMatch and OpenMatch. Thanks for sharing the great code bases!

Reference

If you consider using this code or its derivatives, please consider citing:

@inproceedings{wang2024scomatch,
  title={SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning},
  author={Wang, Zerun and Xiang, Liuyu and Huang, Lang and Mao, Jiafeng and Xiao, Ling and Yamasaki, Toshihiko},
  booktitle={European Conference on Computer Vision},
  pages={217--233},
  year={2024},
  organization={Springer}
}

About

Code for SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning (ECCV2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0