8000 GitHub - kennywang112/GCNN
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

kennywang112/GCNN

Repository files navigation

Data: RAF-DB
GCN framework: GCNconv
Ref : MRE-CNN
Mediapipe model: face_landmarker
Frontend template: free css/html template

How to run

  1. Download the dataset from Kaggle and place it in the Image_data folder.
  2. Install the face_landmarker tool and place it in the model folder.
  3. Execute pip install -r requirements.txt for packages.
  4. Execute RunAdjacency.py to generate the image adjacency matrix.
  5. Execute Fileprocess.py to preprocess the data for each category.
  6. Execute RunModel.py to train the model with mlflow.

Fast deploy frontend

  1. Execute Download.py to get the models for frontend, the models including Mediapipe and the models generated by RunModel.py
  2. Execute app.py script to run the web application.

Other

UMAP.py provides a lower-dimensional view of the model.

Finally you get the full necessary folder structure shown below

path/GCNN
├─.ipynb_checkpoints
├─GradCam
├─Image_data
│  └─DATASET
│      ├─test
│      │  ├─1
│      │  ├─2
│      │  ├─3
│      │  ├─4
│      │  ├─5
│      │  ├─6
│      │  └─7
│      └─train
│          ├─1
│          ├─2
│          ├─3
│          ├─4
│          ├─5
│          ├─6
│          └─7
├─model
├─output_data
│  ├─adjacency
│  │  ├─adjacency_1
│  │  ├─adjacency_2
│  │  ├─adjacency_3
│  │  ├─adjacency_4
│  │  ├─adjacency_5
│  │  ├─adjacency_6
│  │  └─adjacency_7
│  └─landmarks

Note

Install torch with the command below to get a GPU version (if any)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/metal.html

Contributors & Collaborators

尹士文
尹士文
周宇舒
周雨舒
張藝馨
張藝馨
蕭邦宇
蕭邦宇

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0