10000 GitHub - jlqzzz/4d-occ-forecasting: Official code for `Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting'
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

jlqzzz/4d-occ-forecasting

 
 

Repository files navigation

Teaser

Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting

By Tarasha Khurana*, Peiyun Hu*, David Held, and Deva Ramanan

* equal contribution

project page | 5-min summary

Citing us

If you find our work useful, please consider citing:

@inproceedings{khurana2023point,
  title={Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting},
  author={Khurana, Tarasha and Hu, Peiyun and Held, David and Ramanan, Deva},
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2023},
}

Setup

  • Download nuScenes, KITTI-Odometry and ArgoVerse2.0 (code supports the LiDAR dataset, but the change to Sensor dataset is minor). (Tip: See the python scripts to see how to send the file paths.)
  • Create a conda environment with the given environment.yml. Additionally, install the chamferdist package given inside utils/chamferdist by navigating to that directory and doing pip install ..
  • All trained model checkpoints for all three datasets for both 1s and 3s forecasting are available in the models/ folder.
  • The given code has been tested with python3.8, CUDA-11.1.1, CuDNN-v8.0.4.30, GCC-5.5 and NVIDIA GeForce RTX 3090.

🆕 CVPR '23 Argoverse challenge evalkit released!

If participating in the CVPR '23 Argoverse2.0 4D Occupancy Forecasting challenge, please see the eval-kit.

Training

Refer to train.sh.

Testing

Refer to test.sh for executing the ray-based evaluation on all points, and test_fgbg.sh for evaluation separately on foreground and background points (only supported for nuScenes).

Ray tracing baseline

The ray tracing baseline is implemented and evaluated by raytracing_baseline.sh and raytracing_baseline_fgbg.sh.

Cross-sensor generalization

In order to test a model trained on X on a dataset other than X, change the dataset field in the respective model's config.

Acknowledgments

The chamferdist package shipped with this codebase is a version of this package. Voxel rendering is an adaptation of the raycasting in our previous work.

About

Official code for `Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 64.9%
  • Cuda 28.7%
  • C++ 4.9%
  • Shell 1.3%
  • C 0.2%
0