XtractXcel is a simple library for extracting data from Excel files using ClosedXML, transforming it as needed, and loading it into your objects with minimal effort. It supports a variety of data types, flexible column mapping, and both attribute-based and manual mapping approaches.
To install the package add the following line inside your csproj file with the latest version.
<PackageReference Include="XtractXcel" Version="x.x.x" />
An alternative is to install via the .NET CLI with the following command:
dotnet add package XtractXcel
public class Person {
[ExcelColumn("Full Name", "Name", "Employee Name")]
public string? Name { get; set; }
[ExcelColumn("Age", "Employee Age")]
public int? Age { get; set; }
[ExcelColumn("Salary")]
public decimal? Salary { get; set; }
[ExcelColumn("Join Date")]
public DateTime JoinDate { get; set; }
[ExcelColumn("Last Active", "Last Activity")]
public DateTime? LastActive { get; set; }
}
The ExcelColumn
attribute maps Excel column headers to C# properties. You can provide multiple possible column names to handle variations in your Excel files gracefully.
// Get a stream from a file, memory, or any other source
using var stream = File.OpenRead("employees.xlsx");
// Extract the data using a fluent API
var people = new ExcelExtractor()
.WithHeader(true) // Excel file contains headers
.WithWorksheetIndex(1) // Use the first worksheet (1-based index)
.FromStream(stream) // Set the source stream
.Extract<Person>(); // Perform the extraction
// Use the extracted data
foreach (var person in people) {
Console.WriteLine($"Name: {person.Name}, Age: {person.Age}, Joined: {person.JoinDate:d}");
}
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<Person>();
For Excel files without headers, you can use column position for extraction:
public class PersonNoHeader {
// No attributes needed - properties are mapped by column position (1-based)
// First column (A) maps to first property, second column (B) to second property, etc.
public string? Name { get; set; }
public int? Age { get; set; }
public decimal? Salary { get; set; }
public DateTime JoinDate { get; set; }
public DateTime? LastActive { get; set; }
}
// Extract the data
var people = new ExcelExtractor()
.WithHeader(false) // Specify that there's no header row
.WithWorksheetIndex(1)
.FromFile("employees-no-header.xlsx")
.Extract<PersonNoHeader>();
For more control over the extraction process, you can use manual mapping:
// Extract data with manual mapping
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new Person {
Name = row.Cell(1).GetString(),
Age = !row.Cell(2).IsEmpty() ? (int)row.Cell(2).GetDouble() : null,
Salary = !row.Cell(3).IsEmpty() ? (decimal)row.Cell(3).GetDouble() : null,
JoinDate = row.Cell(4).GetDateTime(),
LastActive = !row.Cell(5).IsEmpty() ? row.Cell(5).GetDateTime() : null
});
XtractXcel
supports a wide range of data types:
- Basic types:
string
,int
,decimal
,double
,DateTime
- Nullable variants:
int?
,decimal?
,DateTime?
, etc. TimeSpan
for time valuesGuid
for unique identifiers- Enums for categorized data
If you only need certain columns from an Excel file:
public class PersonWithSpecificColumns {
[ExcelColumn("Name")]
public string? NameOnly { get; set; }
[ExcelColumn("Salary")]
public decimal SalaryOnly { get; set; }
}
var partialData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<PersonWithSpecificColumns>();
Enums are supported out of the box:
public enum UserStatus {
None,
Active,
Inactive,
Suspended
}
public class PersonWithEnumStatus {
[ExcelColumn("Name")]
public string? Name { get; set; }
[ExcelColumn("Status")]
public UserStatus Status { get; set; }
}
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<PersonWithEnumStatus>();
Transform data as it's being extracted:
var transformedData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new Person {
// Convert names to uppercase
Name = row.Cell(1).GetString().ToUpper(),
// Double the age values
Age = !row.Cell(2).IsEmpty() ? (int)(row.Cell(2).GetDouble() * 2) : null,
// Halve the salary values
Salary = !row.Cell(3).IsEmpty() ? (decimal)(row.Cell(3).GetDouble() / 2) : null,
// Add a year to join dates
JoinDate = row.Cell(4).GetDateTime().AddYears(1),
// Use current date for missing activity dates
LastActive = !row.Cell(5).IsEmpty() ? row.Cell(5).GetDateTime() : DateTime.Now
});
You can map Excel data to any object type:
public class CustomPerson {
public string? FullName { get; set; }
public int YearsOld { get; set; }
public decimal AnnualSalary { get; set; }
public DateTime StartDate { get; set; }
public bool IsActive { get; set; }
}
var customData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new CustomPerson {
FullName = row.Cell(1).GetString(),
YearsOld = !row.Cell(2).IsEmpty() ? (int)row.Cell(2).GetDouble() : 0,
AnnualSalary = !row.Cell(3).IsEmpty() ? (decimal)row.Cell(3).GetDouble() : 0,
StartDate = row.Cell(4).GetDateTime(),
IsActive = !row.Cell(5).IsEmpty()
});
The ExcelExtractor
class now supports saving extracted data into various formats using extension methods. Here are some examples:
using var stream = File.OpenRead("employees.xlsx");
var extractor = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream);
string json = extractor.Extract<Person>().SaveAsJson();
Console.WriteLine(json);
using var stream = File.OpenRead("employees.xlsx");
var extractor = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream);
string xml = extractor.Extract<Person>().SaveAsXml();
Console.WriteLine(xml);
using var stream = File.OpenRead("employees.xlsx");
var extractor = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream);
extractor.Extract<Person>().SaveAsXlsx("output.xlsx");
Console.WriteLine("Data saved to output.xlsx");
If your data does not have headers, you can save it directly into an XLSX file without adding headers:
using var stream = File.OpenRead("employees-no-header.xlsx");
var extractor = new ExcelExtractor()
.WithHeader(false)
.WithWorksheetIndex(1)
.FromStream(stream);
var data = extractor.Extract<PersonNoHeader>();
data.SaveAsXlsxWithoutHeader("output-no-header.xlsx");
Console.WriteLine("Data saved to output-no-header.xlsx without headers");
using var stream = File.OpenRead("employees.xlsx");
var extractor = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream);
var manuallyMappedData = extractor.ExtractWithManualMapping(row => new Person
{
Name = row.Cell(1).GetString()?.ToUpper(), // Convert names to uppercase
Age = !row.Cell(2).IsEmpty() ? (int)(row.Cell(2).GetDouble() * 2) : null, // Double the age
Salary = !row.Cell(3).IsEmpty() ? (decimal)(row.Cell(3).GetDouble() / 2) : null, // Halve the salary
JoinDate = row.Cell(4).GetDateTime().AddYears(1), // Add a year to join dates
LastActive = !row.Cell(5).IsEmpty() ? row.Cell(5).GetDateTime() : DateTime.Now // Use current date for missing activity dates
});
manuallyMappedData.SaveAsXlsx("manually_mapped_output.xlsx");
Console.WriteLine("Manually mapped data saved to manually_mapped_output.xlsx");
Benchmark results show that both attribute-based and manual mapping perform well, but manual mapping has a slight edge in certain cases.
Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated |
---|---|---|---|---|---|---|---|
SmallFile_AttributeMapping | 2.685 ms | 0.0504 ms | 0.0539 ms | 148.4375 | 46.8750 | - | 1.88 MB |
SmallFile_ManualMapping | 2.600 ms | 0.0423 ms | 0.0375 ms | 148.4375 | 46.8750 | - | 1.86 MB |
SmallFile_ManualMapping_NoAttributes | 2.613 ms | 0.0183 ms | 0.0171 ms | 148.4375 | 46.8750 | - | 1.86 MB |
MediumFile_AttributeMapping | 16.793 ms | 0.3305 ms | 0.4740 ms | 1000.0000 | 545.4545 | 90.9091 | 13.79 MB |
MediumFile_ManualMapping | 16.172 ms | 0.3170 ms | 0.4647 ms | 1000.0000 | 454.5455 | 90.9091 | 13.66 MB |
LargeFile_AttributeMapping | 174.138 ms | 3.4191 ms | 3.9374 ms | 9000.0000 | 5000.0000 | 2000.0000 | 130.90 MB |
LargeFile_ManualMapping | 169.002 ms | 3.3734 ms | 5.4474 ms | 9000.0000 | 5000.0000 | 2000.0000 | 129.48 MB |
ManyColumns_AttributeMapping | 27.434 ms | 0.5463 ms | 0.9711 ms | 1500.0000 | 750.0000 | 250.0000 | 18.69 MB |
ManyColumns_ManualMapping | 27.409 ms | 0.5114 ms | 1.0095 ms | 1375.0000 | 625.0000 | 250.0000 | 18.65 MB |
If you're already using ClosedXML or similar libraries extensively, this one might not add much extra value. But if you're looking for a simple way to read an Excel file and load it into your objects without any hassle, this might worth checking out .