See the documentation for more.
To install the package, run the following command in the Julia REPL:
] # enter Pkg mode
(@v1.10) pkg> add https://github.com/junyixu/ParticleTracer.jl.git
Jacobian:
Gradient:
Divergence:
Curl:
If
From the above equations, it can be concluded that
Relativistic volume-preserving algorithms in Julia.
# PhysicalConstants
import PhysicalConstants.CODATA2018 as C
c = C.c_0.val
mₑ = C.m_e.val
# simulation parameters
Δt = 1.0e-1
N = 1 # number of particles
TotalSteps = 4000000 # total steps
SavePerNSteps = 10000 # Save 1000 steps
# tokamak parameters
B0 = 2.0 # Magnetic strength (T)
E0 = 2.0 # Electric strength (V/m)
R0 = 1.7 # Major radius of torus (m)
a = 0.4 # Minor radius of torus (m)
# initial conditions
x0 = [1.8, 0, 0] # initial position (m)
unit_p= mₑ * c
p0 = [5, 1, 0]*unit_p # initial momentum (kg*m/s)
ptc_type=:electron # particle type
# pusher=:boris # pusher type
pusher=:RVPA_Cay3D
Study full orbit 3.5 MeV alpha particles under the influence of electromagnetic perturbation of tearing mode in EAST and ITER using geometric algorithm such as relativistic volume preserving algorithm.
- [1] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
- [2] R. C. Davidson, Physics of Nonneutral Plasmas (Imperial College Press, London, 2001), p. 25.
- [3] R. D. Blandford and J. P. Ostriker, Astrophys. J. 221, L29 (1978).
- [4] J. Blake, D. Baker, N. Turner, K. Ogilvie, and R. Lepping, Geophys. Res. Lett. 24, 927, doi:10.1029/97GL00859 (1997).
- [5] D. Summers and R. M. Thorne, J. Geophys. Res. 108, 1143, doi:10.1029/ 2002JA009489 (2003).
- [6] J. V. Vay, Phys. Plasmas 15, 056701 (2008).
- [7] R. Friedel, G. Reeves, and T. Obara, J. Atmos. Sol. - Terr. Phys. 64, 265 (2002).
- [8] M. Honda, J. Meyer-ter-Vehn, and A. Pukhov, Phys. Rev. Lett. 85, 2128 (2000).
- [9] H. Knoepfel and D. A. Spong, Nucl. Fusion 19, 785 (1979).
- [10] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC Press, New York, 2004), p. 174.
- [11] J. Boris, in Proceedings of the Fourth Conference on the Numerical Simulation of Plasmas (Naval Research Laboratory, Washington, DC, 1970), pp. 3–67.
- [12] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, Phys. Plasmas 20, 084503 (2013).
- [13] Y. He, Y. Sun, J. Liu, and H. Qin, J. Comput. Phys. 281, 135 (2015).
- [14] K. Feng and M. Qin, The Symplectic Methods for the Computation of Hamiltonian Equations (Springer, Berlin, 1987).
- [15] Z. J. Shang, Numer. Math. 83, 477 (1999).
- [16] J. M. Finn and L. Chacon, Phys. Plasmas 12, 054503 (2005).
- [17] N. Crouseilles, M. Mehrenberger, and E. Sonnendr€ucker, J. Comput. Phys. 229, 1927 (2010).
- [18] M. Kraus, preprint arXiv:1307.5665 (2013).
- [19] H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008).
- [20] K. Feng, in Proceedings of the 1st China-Japan Conference on Computation of Differential Equations and Dynamical Systems, Numerical Mathematics, edited by Z. Shi and T. Ushijima (World Scientific, 1993), pp. 1–28.
- [21] K. Feng and Z. Shang, Numer. Math. 71, 451 (1995).
- [22] R. I. McLachlan and G. R. W. Quispel, Acta Numer. 11, 341 (2002).
- [23] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Springer, Berlin, 2006), Vol. 31, p. 128.
- [24] X. Guan, H. Qin, and N. J. Fisch, Phys. Plasmas 17, 092502 (2010).
- [25] J. R. Martın-Solıs, J. D. Alvarez, R. Sanchez, and B. Esposito, Phys. Plasmas 5, 2370 (1998).
- [26] J. R. Martın-Solıs, B. Esposito, R. Sanchez, and J. D. Alvarez, Phys. Plasmas 6, 238 (1999).
- [27] Physics of Plasmas 22, 044501 (2015) https://doi.org/10.1063/1.4916570
- [28] Phys. Plasmas 25, 022117 (2018); https://doi.org/10.1063/1.5012767
- [29] Physics of Plasmas 23, 092109 (2016) https://doi.org/10.1063/1.4962677
- [30] R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He, and Y. Sun, Phys. Plasmas 22, 044501 (2015).
- [31] S. Blanes, F. Casas, and A. Murua, SIAM J. Sci. Comput. 27, 1817 (2006).