[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

juliansprt/OpenCvSharpDNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenCvSharp DNN

Example of implementation of YoloV3 and Caffe in OpenCvSharp, in this example it is used pre-trained models to detect persons, faces and a estimation of the probability gender of the faces detected

Requirements

Usage

This is a implementation usage in YoloV3 and Caffe models

           //Directory contains the models and configuration files
           string dir = System.IO.Path.Combine(Directory.GetCurrentDirectory(), "data");

           //Model of YoloV3
           string model = System.IO.Path.Combine(dir, "yolov3.weights");
           string cfg = System.IO.Path.Combine(dir, "yolov3.cfg");
           string labelsYolo = System.IO.Path.Combine(dir, "coco.names");


           //Model of face
           string modelFace = System.IO.Path.Combine(dir, "yolov3-wider_16000.weights");
           string cfgFace = System.IO.Path.Combine(dir, "yolov3-face.cfg");

           //Model of Gender classifaction
           string modelGenderCaffe = System.IO.Path.Combine(dir, "gender_net.caffemodel");
           string cfgGenderCaffe = System.IO.Path.Combine(dir, "deploy_gender.prototxt");

           //Image Path
           string testImage = System.IO.Path.Combine(dir, "friends.jpg");


           using (NetYoloV3 yoloV3 = new NetYoloV3())
           using (NetYoloV3 yoloV3Faces = new NetYoloV3())
           using (NetCaffeAgeGender caffeGender = new NetCaffeAgeGender())
           using (Bitmap bitmap = new Bitmap(testImage))
           using (Bitmap resultImage = new Bitmap(testImage))
           {

               //Initialize models
               yoloV3.Initialize(model, cfg, labelsYolo);
               yoloV3Faces.Initialize(modelFace, cfgFace, new string[] { "faces" });
               caffeGender.Initialize(modelGenderCaffe, cfgGenderCaffe, new string[] { "Male", "Female" });


               //Get result of YoloV3
               NetResult[] resultPersons = yoloV3.Detect(bitmap, labelsFilters: new string[] { "person" });


               //Get result of YoloV3 faces train
               NetResult[] resultFaces = yoloV3Faces.Detect(bitmap);

               using (Graphics canvas = Graphics.FromImage(resultImage))
               {
                   Font font = new Font(FontFamily.GenericSansSerif, 15);


                   foreach (NetResult item in resultFaces)
                   {
                       //Create a roi by each faces
                       using (Bitmap roi = (Bitmap)bitmap.Clone(item.Rectangle, bitmap.PixelFormat))
                       {
                           NetResult resultGender = caffeGender.Detect(roi).FirstOrDefault();

                           canvas.DrawString($"{resultGender.Label} {resultGender.Probability:0.0%}",
                               font,
                               new SolidBrush(Color.Green),
                               item.Rectangle.X - font.GetHeight(), item.Rectangle.Y - font.GetHeight());

                       }

                       canvas.DrawRectangle(new Pen(Color.Red, 2), item.Rectangle);
                   }

                   canvas.Save();
               }

               resultImage.Save(Path.Combine(dir, "result.jpg"));

           }

Pre-trained models

You can download the pre-trained models in these link:

Google Drive: https://drive.google.com/drive/folders/1oj9p04mPjbbCbq1qSK8ChMjOhMLMpk42

Results

For the next image:

Input image

This is the result: Input image

And this is the diagnostics the time of execution:

The model NetYoloV3 - Faces has taken 1609 milliseconds

The model NetCaffeGender has taken 45 milliseconds

License

Licensed under the MIT License.

Releases

No releases published

Packages

No packages published

Languages