Build sales forecast and user interest predictive models using Prophet
.
https://nbviewer.org/github/juil/ProphetForecast/blob/master/forecasting_net_prophet.ipynb
Period | Google Search Traffic |
---|---|
2016-2020 | 35172.5 |
May 2020 | 38181 |
close | Search Trends | Lagged Search Trends | Stock Volatility | Hourly Stock Return | |
---|---|---|---|---|---|
close | 1.000000 | 0.011918 | 0.012135 | 0.477935 | 0.022970 |
Search Trends | 0.011918 | 1.000000 | 0.384292 | -0.180868 | -0.029732 |
Lagged Search Trends | 0.012135 | 0.384292 | 1.000000 | -0.119010 | 0.018147 |
Stock Volatility | 0.477935 | -0.180868 | -0.119010 | 1.000000 | 0.046713 |
Hourly Stock Return | 0.022970 | -0.029732 | 0.018147 | 0.046713 | 1.000000 |
Rendered in Google Colab
# Install the required libraries
!pip install prophet
!pip install hvplot
!pip install holoviews
!pip install tabulate
!pip install numpy
*Starter code provided by edX.