8000 GitHub - imatge-upc/salgan at junting
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

imatge-upc/salgan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

Junting Pan Cristian Canton Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto
Junting Pan Cristian Canton Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto

A joint collaboration between:

logo-insight logo-dcu logo-microsoft logo-bsc logo-gpi
Insight Centre for Data Analytics Dublin City University (DCU) Microsoft Barcelona Supercomputing Center UPC Image Processing Group

Abstract

We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network trained to solve a binary classification task between the saliency maps generated by the generative stage and the ground truth ones. Our experiments show how adversarial training allows reaching state-of-the-art performance across different metrics when combined with a widely-used loss function like BCE.

Publication

An arXiv pre-print of our work is available.

Image of the paper

Please cite with the following Bibtex code:

@InProceedings{Pan_2016_CVPR,
author = {Pan, Junting and Sayrol, Elisa and Giro-i-Nieto, Xavier and McGuinness, Kevin and O'Connor, Noel E.},
title = {Shallow and Deep Convolutional Networks for Saliency Prediction},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}

You may also want to refer to our publication with the more human-friendly Chicago style:

Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O'Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. "SalGAN: Visual Saliency Prediction with Generative Adversarial Networks." arXiv. 2017.

Models

The SalGAN presented in our work can be downloaded from the links provided below the figure:

SalGAN Architecture architecture-fig

[SalGAN Generator Model (127 MB)] [SalGAN Discriminator (3.4 MB)]

Visual Results

Qualitative saliency predictions

Datasets

Training

As explained in our paper, our networks were trained on the training and validation data provided by SALICON.

Test

Two different dataset were used for test:

Software frameworks

Our paper presents two convolutional neural networks, one correspends to the Generator (Saliency Prediction Network) and the another is the Discriminator for the adversarial training. To compute saliency maps only the Generator is needed.

SalGAN on Lasagne

SalGAN is implemented in Lasagne, which at its time is developed over Theano.

pip install -r https://github.com/imatge-upc/saliency-salgan-2017/blob/junting/requirements.txt

Usage

In order to run the test script to predict saliency maps, you can run the following command after specifying the path to you images and the path to the output saliency maps:

THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 03-predict.py

To train our model from scrath you need to run the following command:

THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 02-train.py

Download the pretrained VGG-16 weights from: vgg16.pkl

Acknowledgements

We would like to especially thank Albert Gil Moreno and Josep Pujal from our technical support team at the Image Processing Group at the UPC.

AlbertGil-photo JosepPujal-photo
Albert Gil Josep Pujal
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeoForce GTX Titan Z and Titan X used in this work. logo-nvidia
The Image ProcessingGroup at the UPC is a SGR14 Consolidated Research Group recognized and sponsored by the Catalan Government (Generalitat de Catalunya) through its AGAUR office. logo-catalonia
This work has been developed in the framework of the project BigGraph TEC2013-43935-R, funded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF). logo-spain
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/12/RC/2289. logo-ireland

Contact

If you have any general doubt about our work or code which may be of interest for other researchers, please use the public issues section on this github repo. Alternatively, drop us an e-mail at mailto:xavier.giro@upc.edu.

<script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-7678045-3', 'auto'); ga('send', 'pageview'); </script>

About

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages

0