8000 GitHub - izumitkhr/matagent: MatAgent: A generative framework for interpretable and targeted inorganic materials design using diffusion-based generation, property prediction, and LLM-driven reasoning.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

MatAgent: A generative framework for interpretable and targeted inorganic materials design using diffusion-based generation, property prediction, and LLM-driven reasoning.

License

Notifications You must be signed in to change notification settings

izumitkhr/matagent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MatAgent

A generative framework for interpretable and targeted inorganic materials design using diffusion-based generation, property prediction, and LLM-driven reasoning.

Requirements

  • Python 3.12

Installation

Install PyTorch

First, install PyTorch. For example, with CUDA 12.4, you can install PyTorch as follows:

$ pip install torch==2.5.1 --index-url https://download.pytorch.org/whl/cu124

Install PyG

Install PyTorch Geometric and its dependencies:

$ pip install torch_geometric
$ pip install torch_scatter torch_sparse -f https://data.pyg.org/whl/torch-2.5.0+cu124.html

Intall other dependencies

Install all other required packages with:

$ pip install -e .

Setup OpenAI API Key

Set your OpenAI API Key as an environment variable:

$ export OPENAI_API_KEY="YOUR_API_KEY"

Running the code

Running the inference script

After installation, run the inference script:

$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8

Here, the command parameters control the execution as follows:

  • --use_planning: Use tool-assisted Planning and Proposition
  • --data_path: Path to the dataset used for sampling initial compositions
  • --n_init: Number of independent initializations to perform
  • --n_iterations: Number of iterations for each independent run
  • --target_value: Target formation energy (in eV/atom) Additional configurable parameters are available in agent4crys/scripts/inference.py.

Generate with additional constraints

To impose additional constraints, use the --additional_prompt parameter.

$ matagent-inference --use_planning --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8 --additional_prompt "ADDITIONAL PROMPT"

Initialize with Retriever

Checkpoint download instructions

  • To initialize using the Retriever method, first download the model checkpoint from Hugging Face. Use the following command to download the checkpoint:
    $ wget https://huggingface.co/izumitkh/matagent-retriever/resolve/main/best_model.pth
    
  • Move best_model.pth to the agent4crys/component/contriever/pretrain directory.

Generate with Retriever initialization

After placing the checkpoint in the correct location, you can execute generation by setting the --initial_guess parameter to "retriever".

$ matagent-inference --use_planning --initial_guess "retriever" --data_path "./data/mp_20/train.csv" --n_init 1 --n_iterations 16 --target_value -3.8

Citation

@article{takahara2025accelerated,
  title={Accelerated Inorganic Materials Design with Generative AI Agents}, 
  author={Izumi Takahara and Teruyasu Mizoguchi and Bang Liu},
  journal={arXiv preprint arXiv:2504.00741},
  year={2025},
}

Acknowledgement

This project was primarily built upon CDVAE, DiffCSP, ComFormer, and MatExpert.

About

MatAgent: A generative framework for interpretable and targeted inorganic materials design using diffusion-based generation, property prediction, and LLM-driven reasoning.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0