8000 GitHub - izilu/RAL-TSOG: Public repository for Temporal Scene-Object Graph Learning for Object Navigation
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

izilu/RAL-TSOG

Repository files navigation

Temporal Scene-Object Graph Learning for Object Navigation

Lu Chen, Zongtao He, Liuyi Wang, Chengju Liu, Qijun Chen (Accepted by IEEE Robotics and Automation Letters)

Abstract

We introduce a temporal scene-object graph (TSOG) to construct an informative and efficient ego-centric visual representation. Firstly, we develop a holistic object feature descriptor (HOFD) to fully describe object features from different aspects, facilitating the learning of relationships between observed and unseen objects. Next, we propose a scene-object graph (SOG) to simultaneously learn local and global correlations between objects and agent observations, granting the agent a more comprehensive and flexible scene understanding ability. This facilitates the agent to perform target association and search more efficiently. Finally, we introduce a temporal graph aggregation (TGA) module to dynamically aggregate memory information across consecutive time steps. TGA offers the agent a dynamic perspective on historical steps, aiding in navigation towards the target in longer trajectories. Extensive experiments in AI2THOR demonstrate our method's effectiveness and efficiency for ObjectNav tasks in unseen environments.

Setup

  • Clone the repository git clone https://github.com/izilu/RAL-TSOG and move into the top level directory cd TSOG
  • Create conda environment. pip install -r requirements.txt
  • Download the dataset, which refers to ECCV-VN. The offline data is discretized from AI2-Thor simulator.
    data/ 
        └── Scene_Data/
            ├── FloorPlan1/
            │   ├── resnet18_featuremap.hdf5
            │   ├── graph.json
            │   ├── visible_object_map_1.5.json
            │   ├── det_feature_categories.hdf5
            │   ├── grid.json
            │   └── optimal_action.json
            ├── FloorPlan2/
            └── ...

Training and Evaluation

Train our TSOG model

python main.py --title TSOG --model TSOG --workers 36 --gpu-ids 0 1 2 --max-ep 3000000 --gat-memory-len 25 --save-model-dir trained_models/TSOG --log-dir runs/TSOG --results-json eval_best_results/TSOG/TSOG.json --test-after-train

The above command will launch a full test at the end to evaluate the navigation performance of all checkpoints and report optimal results.

Continue training

Continuing Train TSOG: python main.py --title TSOG --model TSOG --workers 36 --gpu-ids 0 1 2 --max-ep 3000000 --gat-memory-len 25 --save-model-dir trained_models/TSOG --log-dir runs/TSOG --continue-training trained_models/TSOG/<lateset_model.dat> --results-json eval_best_results/TSOG/TSOG.json --test-after-train

Evaluate our TSOG model

python full_eval.py --title TSOG --model TSOG --results-json eval_best_results/TSOG/TSOG.json --gpu-ids 0 --workers 6 --gat-memory-len 25 --save-model-dir trained_models/TSOG --log-dir runs/TSOG --visualize-file-name analysis-TSOG.json

Evaluate our pretrained TSOG model

python full_eval.py --title TSOG --model TSOG --results-json eval_best_results/TSOG/TSOG.json --gpu-ids 0 --workers 6 --gat-memory-len 25 --save-model-dir trained_models/pretrained_model --log-dir runs/TSOG --visualize-file-name analysis-TSOG.json

Citing

If you find this project useful in your research, please consider citing:

@article{10933547,
  author = {Chen, Lu and He, Zongtao and Wang, Liuyi and Liu, Chengju and Chen, Qijun},
  journal = {IEEE Robotics and Automation Letters},
  title = {Temporal Scene-Object Graph Learning for Object Navigation},
  year = {2025},
  month = may,
  volume = {10},
  number = {5},
  pages = {4914-4921},
  keywords = {Navigation;Correlation;Visualization;Semantics;Feature extraction;Training;Artificial intelligence;Aggregates;Trajectory;Reinforcement learning;Vision-based navigation;reinforcement learning;representation learning;autonomous agents},
  doi = {10.1109/LRA.2025.3553055},
}

About

Public repository for Temporal Scene-Object Graph Learning for Object Navigation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0