-
Codebat Intelligence
- @CodebatR420
Lists (2)
Sort Name ascending (A-Z)
Starred repositories
Stay on top of trending topics on social media and the web with AI
Visualizer for neural network, deep learning and machine learning models
胡船长,B 站《船说:算法与数据结构》课程讲义和代码
hofong428 / KuiperInfer
Forked from zjhellofss/KuiperInfer带你从零实现一个高性能的深度学习推理库,支持大模型 llama2 、Unet、Yolov5、Resnet等模型的推理。Implement a high-performance deep learning inference library step by step
Enhance efficiency, reduce resource consumption, and facilitate deployment of Large Language Models (LLMs) like GPT-3/4.
Optimizing GPU kernels to reduce memory usage is crucial for enhancing the performance, scalability, and efficiency of deep learning models and other GPU-accelerated applications.
hofong428 / databend
Forked from databendlabs/databend𝗗𝗮𝘁𝗮, 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 & 𝗔𝗜. Modern alternative to Snowflake. Cost-effective and simple for massive-scale analytics. https://databend.com
JuiceFS is a distributed POSIX file system built on top of Redis and S3.
Designing a microservices-based customer service system leveraging vLLM
校招、秋招、春招、实习好项目,带你从零动手实现支持LLama2/3和Qwen2.5的大模型推理框架。
使用 Rust 语言重新实现 https://github.com/zjhellofss/KuiperInfer 和 https://github.com/zjhellofss/kuiperdatawhale 中的深度学习推理框架。
校招、秋招、春招、实习好项目!带你从零实现一个高性能的深度学习推理库,支持大模型 llama2 、Unet、Yolov5、Resnet等模型的推理。Implement a high-performance deep learning inference library step by step
A CUDA tutorial to make people learn CUDA program from 0
Deep Learning papers reading roadmap for anyone who are eager to learn this amazing tech!
The simplest way to serve AI/ML models in production
TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and support state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorR…
🐠 Babel is a compiler for writing next generation JavaScript.
All Algorithms implemented in Python
Codes for the videos of my YouTube channel
总结梳理自然语言处理工程师(NLP)需要积累的各方面知识,包括面试题,各种基础知识,工程能力等等,提升核心竞争力
主要是我是日常看过的不错的文章的资源汇总,方便自己也分享给大家。有些我看过的,就会做简单的解读,没看过的,就先罗列一下,然后之后看了把解读更新上;涉及到搜索/推荐/自然语言处理。