8000 GitHub - hitcslj/Airfoil: Controllable and Editable Airfoil Generation with Physics and Keypoint
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

hitcslj/Airfoil

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

$\textbf{PK-VAE}^2$: Controllable and Editable Airfoil Generation with Physics and Keypoint

Editing keypoint & parameters, built upon pytorch

Installation

conda create --name airfoil python=3.8
conda activate airfoil
pip install -r requirements.txt

Dataset

请将数据集软链接到 data 文件夹下, 默认数据集为 data/airfoil/cst_gen/*.dat

在项目的根文件夹下:

# use CST method to generate airfoil
python dataload/cst_gen.py 

# interpolate airfoil to specified number of points
python dataload/interpolate.py 

# split train/val/test
python dataload/datasplit.py 

# generate parsec feature
python dataload/parsec_direct.py 

Usage

在项目的根文件夹下:

reproduce baseline: softvae, cvae-gan

# train soft-cvae condition on keypoint&parsec
python train_soft_vae.py 

# eval editing performance
python eval_editing_softvae.py

# train cvae-gan condition on keypoint&parsec
python train_cvae_gan.py 

# eval editing performance
python eval_editing_cvae_gan.py

train and eval $\text{PK-VAE}^2$

# train pkvae condition on keypoint&parsec
python train_pk_vae.py

# eval editing performance
python eval_editing_pkvae.py

# train editing keypoint condition on source_keypoint,target_keypoint,source_param, generate: target_param
python train_ekvae.py

# join train editing keypoint & pkvae condition source_keypoint,target_keypoint,source_param, generate: target_point
python train_ek_pkvae.py

# train editing param condition on source_param,target_param,source_keypoint, generate: target_keypoint
python train_epvae.py

# train editing param condition on source_param,target_param,source_keypoint, generate: target_point
python train_ep_pkvae.py

ablation study

# decrease control keypoints 1/20
python  train_pkvae.py --downsample_rate 20 --condition_size 24 --log_dir logs/pk_vae_2 --device cuda:1

# decrease control keypoints 1/30
python  train_pkvae.py --downsample_rate 30 --condition_size 20 --log_dir logs/pk_vae_3 --device cuda:2

About

Controllable and Editable Airfoil Generation with Physics and Keypoint

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

0