8000 GitHub - hirotomusiker/cifar10_pytorch: Model benchmark on CIFAR10 dataset in PyTorch.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

hirotomusiker/cifar10_pytorch

Repository files navigation

CIFAR10 Benchmark in PyTorch

Easy-to-run model benchmark on CIFAR10.

With this repository you can:

  • train VGG[1], ResNet[2]
  • manage training conditions using OmegaConf
  • plot the results on tensorboard
  • build environment using docker

So far you cannot:

  • train models on ImageNet
  • train models using multiple GPUs
  • load tensorflow weights

What's New

  • Updated docker and config environments (Dec. 2023)
  • EfficientNet models are no longer supported (Dec. 2023)

Benchmark Results

RandomCrop and LRFlip are used for data augmentation.

From Scratch

Input size is 32x32.

VGG16: 93.3 %ResNet18: 94.3%

Getting Started

Prerequisites:

  • Python 3.6+
  • PyTorch 1.0+
  • (optional) tensorboardX

Docker

Install docker-compose and nvidia-container-runtime beforehand.

$ docker-compose build --build-arg UID="`id -u`" dev
$ docker-compose run dev

Training on CIFAR10

You can select a model to train by specifying a config file.

$ python train.py --help
usage: train.py [-h] [--config CONFIG] [--tfboard TFBOARD]
                [--checkpoint_dir CHECKPOINT_DIR] [--resume RESUME]

optional arguments:
  -h, --help       show this help message and exit
  --config CONFIG  path to config file
  --tfboard TFBOARD  tensorboard path for logging
  --checkpoint_dir CHECKPOINT_DIR
            directory where checkpoint files are saved
  --resume RESUME       checkpoint file path

example:

$ python train.py --config configs/vgg16.yaml --tfboard out

TODOs

(TBD)

References

[1] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper
[2] K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition" paper
[3] M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" paper
[4] pytorch-cifar

About

Model benchmark on CIFAR10 dataset in PyTorch.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0