PaperCoder is a multi-agent LLM system that transforms paper into a code repository.
It follows a three-stage pipeline: planning, analysis, and code generation, each handled by specialized agents.
Our method outperforms strong baselines on both Paper2Code and PaperBench and produces faithful, high-quality implementations.
- ⚡ Quick Start
- 📚 Detailed Setup Instructions
- 📦 Paper2Code Benchmark Datasets
- 📊 Model-based Evaluation of Repositories
- Note: The following command runs example paper (Attention Is All You Need).
- 💵 Estimated cost for using o3-mini: $0.50–$0.70
pip install openai
export OPENAI_API_KEY="<OPENAI_API_KEY>"
cd scripts
bash run.sh
- If you encounter any issues installing vLLM, please refer to the official vLLM repository.
- The default model is
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
.
pip install vllm
cd scripts
bash run_llm.sh
outputs
├── Transformer
│ ├── analyzing_artifacts
│ ├── coding_artifacts
│ └── planning_artifacts
└── Transformer_repo # Final output repository
- 💡 To use the
o3-mini
version, make sure you have the latestopenai
package installed. - 📦 Install only what you need:
- For OpenAI API:
openai
- For open-source models:
vllm
- If you encounter any issues installing vLLM, please refer to the official vLLM repository.
- For OpenAI API:
pip install openai
pip install vllm
- Or, if you prefer, you can install all dependencies using
pip
:
pip install -r requirements.txt
The following process describes how to convert a paper PDF into JSON format.
If you have access to the LaTeX source and plan to use it with PaperCoder, you may skip this step and proceed to 🚀 Running PaperCoder.
Note: In our experiments, we converted all paper PDFs to JSON format.
- Clone the
s2orc-doc2json
repository to convert your PDF file into a structured JSON format.
(For detailed configuration, please refer to the official repository.)
git clone https://github.com/allenai/s2orc-doc2json.git
- Run the PDF processing service.
cd ./s2orc-doc2json/grobid-0.7.3
./gradlew run
- Convert your PDF into JSON format.
mkdir -p ./s2orc-doc2json/output_dir/paper_coder
python ./s2orc-doc2json/doc2json/grobid2json/process_pdf.py \
-i ${PDF_PATH} \
-t ./s2orc-doc2json/temp_dir/ \
-o ./s2orc-doc2json/output_dir/paper_coder
- Note: The following command runs example paper (Attention Is All You Need).
If you want to run PaperCoder on your own paper, please modify the environment variables accordingly.
- 💵 Estimated cost for using o3-mini: $0.50–$0.70
# Using the PDF-based JSON format of the paper
export OPENAI_API_KEY="<OPENAI_API_KEY>"
cd scripts
bash run.sh
# Using the LaTeX source of the paper
export OPENAI_API_KEY="<OPENAI_API_KEY>"
cd scripts
bash run_latex.sh
- The default model is
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
.
# Using the PDF-based JSON format of the paper
cd scripts
bash run_llm.sh
# Using the LaTeX source of the paper
cd scripts
bash run_latex_llm.sh
-
Huggingface dataset: paper2code
-
You can find the description of the Paper2Code benchmark dataset in data/paper2code.
-
For more details, refer to Section 4.1 "Paper2Code Benchmark" in the paper.
-
We evaluate repository quality using a model-based approach, supporting both reference-based and reference-free settings.
The model critiques key implementation components, assigns severity levels, and generates a 1–5 correctness score averaged over 8 samples using o3-mini-high. -
For more details, please refer to Section 4.3.1 (Paper2Code Benchmark) of the paper.
-
Note: The following examples evaluate the sample repository (Transformer_repo).
Please modify the relevant paths and arguments if you wish to evaluate a different repository.
pip install tiktoken
export OPENAI_API_KEY="<OPENAI_API_KEY>"
target_repo_dir
is the generated repository.
cd codes/
python eval.py \
--paper_name Transformer \
--pdf_json_path ../examples/Transformer_cleaned.json \
--data_dir ../data \
--output_dir ../outputs/Transformer \
--target_repo_dir ../outputs/Transformer_repo \
--eval_result_dir ../results \
--eval_type ref_free \
--generated_n 8 \
--papercoder
target_repo_dir
is the generated repository.gold_repo_dir
should point to the official repository (e.g., author-released code).
cd codes/
python eval.py \
--paper_name Transformer \
--pdf_json_path ../examples/Transformer_cleaned.json \
--data_dir ../data \
--output_dir ../outputs/Transformer \
--target_repo_dir ../outputs/Transformer_repo \
--gold_repo_dir ../examples/Transformer_gold_repo \
--eval_result_dir ../results \
--eval_type ref_based \
--generated_n 8 \
--papercoder
========================================
🌟 Evaluation Summary 🌟
📄 Paper name: Transformer
🧪 Evaluation type: ref_based
📁 Target repo directory: ../outputs/Transformer_repo
📊 Evaluation result:
📈 Score: 4.5000
✅ Valid: 8/8
========================================
🌟 Usage Summary 🌟
[Evaluation] Transformer - ref_based
🛠️ Model: o3-mini
📥 Input tokens: 44318 (Cost: $0.04874980)
📦 Cached input tokens: 0 (Cost: $0.00000000)
📤 Output tokens: 26310 (Cost: $0.11576400)
💵 Current total cost: $0.16451380
🪙 Accumulated total cost so far: $0.16451380
============================================