8000 GitHub - gentlejay/Gensyn-ai
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

gentlejay/Gensyn-ai

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

image

Run RL Swarm (Testnet) Node

RL Swarm is a fully open-source framework developed by GensynAI for building reinforcement learning (RL) training swarms over the internet. This guide walks you through setting up an RL Swarm node and a web UI dashboard to monitor swarm activity.

Hardware Requirements

  • CPU: Minimum 16GB RAM (more RAM recommended for larger models or datasets).

OR

  • GPU (Optional): Supported CUDA devices for enhanced performance:
    • RTX 3090
    • RTX 4090
    • A100
    • H100
  • Note: You can run the node without a GPU using CPU-only mode.

1) Install Dependencies

1. Update System Packages

sudo apt-get update && sudo apt-get upgrade -y

2. Install General Utilities and Tools

sudo apt install screen curl iptables build-essential git wget lz4 jq make gcc nano automake autoconf tmux htop nvme-cli libgbm1 pkg-config libssl-dev libleveldb-dev tar clang bsdmainutils ncdu unzip libleveldb-dev  -y

3. Install Docker

# Remove old Docker installations
for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do sudo apt-get remove $pkg; done

# Add Docker repository
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg

echo \
  "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
  "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
  sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

# Install Docker
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

# Test Docker
sudo docker run hello-world
  • Tip: To run Docker without sudo, add your user to the Docker group:
sudo usermod -aG docker $USER

4. Install Python

sudo apt-get install python3 python3-pip python3-venv python3-dev -y

5. Install Node

sudo apt-get update
curl -fsSL https://deb.nodesource.com/setup_22.x | sudo -E bash -
sudo apt-get install -y nodejs
node -v
sudo npm install -g yarn
yarn -v

6. Install Yarn

curl -o- -L https://yarnpkg.com/install.sh | bash
export PATH="$HOME/.yarn/bin:$HOME/.config/yarn/global/node_modules/.bin:$PATH"
source ~/.bashrc

2) Get HuggingFace Access token

1- Create account in HuggingFace

2- Create an Access Token with Write permissions here and save it


3) Clone the Repository

git clone https://github.com/gensyn-ai/rl-swarm/
cd rl-swarm

4) Run the swarm

Open a screen to run it in background

screen -S swarm

Install swarm

python3 -m venv .venv
source .venv/bin/activate
./run_rl_swarm.sh

Press Y


5) Login

1- You have to receive Waiting for userData.json to be created... in logs

image

2- Open login page in browser

  • Local PC: http://localhost:3000/
  • VPS: http://ServerIP:3000/

3- ⚠️ If you can't login or no email code received, this is because you are using VPS just Forward port:

  • In windows start menu, Search Powershell and open its terminal in your local PC
  • Enter the command below in your local terminal and replace your vps ip with Server_IP and your vps port(.eg 22) with SSH_PORT
ssh -L 3000:localhost:3000 root@Server_IP -p SSH_PORT
  • This prompts you to enter your VPS password, when you enter it, you connect and tunnel to your vps
  • Now go to browser and open http://localhost:3000/ and login

4- Login with your preferred method

image

  • After login, your terminal starts the installation.

5- Push models to huggingface

  • Enter your HuggingFace access token you've created when it is prompted

image


6) Backup

1- Node name

  • Now your node started runnin 6657 g, Find your name after word Hello, like mine is whistling hulking armadillo as in the image below (You can use CTRL+SHIFT+F to search Hello in terminal)

image

2- Node .pem file

  • Save swarm.pem file in this directory: /root/rl-swarm/

Screen commands

  • Minimize: CTRL + A + D
  • Return: screen -r swarm
  • Stop and Kill: screen -XS swarm quit

7) Run Swarm Dashboard UI (Optional)

cd $HOME cd rl-swarm
docker compose up -d --build

Open the dashboard in browser via:

  • Local PC: 0.0.0.0:8080
  • VPS: ServerIP:8080

You can search your Node name in the dashboard after a while when you have done your first training completed

image


Run on Hyperbolic GPUs

  • To install the node on Hyperbolic check this Guide: Rent & Connect to GPU
  • Add this flag: -L 3000:localhost:3000 in front of your Hyperbolic's SSH-command, this will allow you to access to login page via local system.

Screenshot_677

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0