The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics.
The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.
There is no single approach to explainability that works best. There are many ways to explain: data vs. model, directly interpretable vs. post hoc explanation, local vs. global, etc. It may therefore be confusing to figure out which algorithms are most appropriate for a given use case. To help, we have created some guidance material and a chart that can be consulted.
We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your explainability algorithms and metrics. To get started as a contributor, please join the AI Explainability 360 Community on Slack by requesting an invitation here. Please review the instructions to contribute code here.