8000 GitHub - flow-ljh/Semi-IIN
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

flow-ljh/Semi-IIN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Semi-IIN

pic-art-v2

Environment setup

  1. create a new environment using conda or pip (We use Python 3.10.16)
  2. pip install -r requirements.txt

Download Data

The three datasets (CMU-MOSI, CMU-MOSEI, and AMI) are available from this link: https://pan.baidu.com/s/1_-D5YO_cblNIbnwDJXo0BA 提取码:dw3x

Data Directory

To run our preprocessing and training codes directly, please put the necessary files from downloaded data in separate folders as described below.

code/data/
    mosi/together/
        audio
        text
        visual
    mosei/
        audio/hubert-FRA
        text/roberta-4-FRA
        visual
    ami/
        audio
        text
        visual
        

After that, you should move the data from ami to mosi/mosei data directory, respectively.

Train with MA only

python code/run.py

  --dataset mosei(default: mosi, option: [mosei, mosi])

  --lab_num 16326(for mosei, it is 16326; for mosi, it is 1284)

  --pretrain

Train with MA && Self-training

Step 1:
python code/run.py

  --dataset mosei

  --k 3236(for mosei, it is the size of ami dataset; for mosi, it is 40)

  --generate_pseudo(store true)

Step 2: 
python code/run.py

  --dataset mosei

  --retrain(store true)

  --lab_num 16326(for mosei, it is 16326; for mosi, it is 1284)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0